Exploring Cheminformatic Toolsets for Predicting the Dermal Toxicity of Furanocoumarins

Douglas Vieira Thomaz, Matheus Gabriel de Oliveira, Vinicius Barreto da Silva, Pierre Alexandre dos Santos, Rene Oliveira do Couto, Rene Oliveira do Couto

Abstract

Linear furanocoumarins are skin sensitizers and anticancer agents whose appeal in skincare therapeutics is widely exploited. Owing to the need to predict the biological activities of medicines, this work aimed the investigate the predicted dermal toxicity of linear furanocoumarins through chemoinformatic approaches. Therefore, eight major linear furanocoumarins of interest in medicine were selected, and their pharmacophores / toxicophores were modelled and inputted in several databases and cheminformatic toolsets previously described in the literature. Moreover, Principal Components Analysis was performed to allow multivariable comparisons. Results showcased that the first two PCs accounted for 95.48% of all variance in the model, and molecular weight and polar surface showcased a positive correlation to Log P and Log Kp, which may be involved in skin penetration. Moreover, the pharmacophore modelling evidenced superimposition between linear furanocoumarins, ethidium bromide and acridine orange, thereby suggesting that these compounds share similar biological effects, supported by their acknowledged DNA intercalating activities. Therefore, this work showcased the application of various cheminformatic tools to screen the dermal toxicity of chemicals.




Keywords


skin sensitizer; DNA intercalation; secondary metabolite; in silico; molecular modelling

References


Ibbotson, S. H. (2018). A Perspective on the Use of NB-UVB Phototherapy vs. PUVA Photochemotherapy. Frontiers in medicine, 5. doi: 10.3389/fmed.2018.00184

Stern, R. S. (2007). Psoralen and Ultraviolet A Light Therapy for Psoriasis. New England Journal of Medicine, 357(7), 682–690. doi: 10.1056/nejmct072317

Bethea, D., Fullmer, B., Syed, S., Seltzer, G., Tiano, J., Rischko, C., … Gasparro, F. P. (1999). Psoralen photobiology and photochemotherapy: 50 years of science and medicine. Journal of Dermatological Science, 19(2), 78–88. doi: 10.1016/s0923-1811(98)00064-4

Antunes, R. S., Thomaz, D. V., Garcia, L. F., Gil, E. de S., Sommerset, V. S., & Lopes, F. M. (2019). Determination of Methyldopa and Paracetamol in Pharmaceutical Samples by a Low Cost Genipa americana L. Polyphenol Oxidase Based Biosensor. Advanced Pharmaceutical Bulletin, 9(3), 416–422. doi: 10.15171/apb.2019.049

Da Cunha, C. E. P., Rodrigues, E. S. B., Fernandes Alecrim, M., Thomaz, D. V., Macêdo, I. Y. L., Garcia, L. F., … de Souza Gil, E. (2019). Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes. Pharmaceuticals, 12(2), 83. doi: 10.3390/ph12020083

Garcia, L. F., da Cunha, C. E. P., Moreno, E. K. G., Vieira Thomaz, D., Lobón, G. S., Luque, R., … de Souza Gil, E. (2018). Nanostructured TiO2 Carbon Paste Based Sensor for Determination of Methyldopa. Pharmaceuticals, 11(4), 99. doi:10.3390/ph11040099

Garcia, L. F., da Cunha, C. E. P., Moreno, E. K. G., Vieira Thomaz, D., Lobón, G. S., Luque, R., … de Souza Gil, E. (2018). Nanostructured TiO2 Carbon Paste Based Sensor for Determination of Methyldopa. Pharmaceuticals, 11(4), 99. doi: 10.3390/ph11040099

Macêdo, I. Y. L. de, Alecrim, M. F., Oliveira Neto, J. R., Torres, I. M. S., Thomaz, D. V., & Gil, E. de S. (2020). Piroxicam voltammetric determination by ultra low cost pencil graphite electrode. Brazilian Journal of Pharmaceutical Sciences, 56. doi: 10.1590/s2175-97902019000317344

Alves, C. B., Rodrigues, E. S. B., Thomaz, D. V., Aguiar Filho, A. M. de, Gil, E. de S., & Couto, R. O. do. (2020). Correlation of polyphenol content and antioxidant capacity of selected teas and tisanes from Brazilian market. Brazilian Journal of Food Technology, 23. doi: 10.1590/1981-6723.03620

Contardi, U., Morikawa, M., & Thomaz, D. (2020). Redox Behavior of Central-Acting Opioid Tramadol and Its Possible Role in Oxidative Stress. Medical Sciences Forum, 2(1), 16. doi: 10.3390/cahd2020-08557

Cimino, G. D., Gamper, H. B., Isaacs, S. T., & Hearst, J. E. . (1985). Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annual Review of Biochemistry, 54(1), 1151–1193. doi: 10.1146/annurev.bi.54.070185.005443

Da Silva, V. B., Kawano, D. F., Carvalho, I., Conceição, E. C., Freitas, O., & Silva, C. H. T. de P. (2009). Psoralen and Bergapten: In Silico Metabolism and Toxicophoric Analysis of Drugs Used to Treat Vitiligo. Journal of Pharmacy & Pharmaceutical Sciences, 12(3), 378. doi: 10.18433/j3w01d

Thomaz, D. V., de Oliveira, M. G., Rodrigues, E. S. B., da Silva, V. B., & dos Santos, P. A. (2020). Physicochemical Investigation of Psoralen Binding to Double Stranded DNA through Electroanalytical and Cheminformatic Approaches. Pharmaceuticals, 13(6), 108. doi: 10.3390/ph13060108

Nijsten, T. E. C., & Stern, R. S. (2003). The Increased Risk of Skin Cancer Is Persistent After Discontinuation of Psoralen+Ultraviolet A: A Cohort Study. Journal of Investigative Dermatology, 121(2), 252–258. doi: 10.1046/j.1523-1747.2003.12350.x

Oldham, M., Yoon, P., Fathi, Z., Beyer, W. F., Adamson, J., Liu, L., … Spector, N. L. (2016). X-Ray Psoralen Activated Cancer Therapy (X-PACT). PLOS ONE, 11(9), e0162078. doi: 10.1371/journal.pone.0162078

Menter, A., Gottlieb, A., Feldman, S. R., Van Voorhees, A. S., Leonardi, C. L., Gordon, K. B., … Bhushan, R. (2008). Guidelines of care for the management of psoriasis and psoriatic arthritis. Journal of the American Academy of Dermatology, 58(5), 826–850. doi: 10.1016/j.jaad.2008.02.039

Cardoso, C. A., Honda, N. K., & Barison, A. (2002). Simple and rapid determination of psoralens in topic solutions using liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 27(1-2), 217–224. doi:10.1016/s0731-7085(01)00537-4

Diawara, M. M., Trumble, J. T., White, K. K., Carson, W. G., & Martinez, L. A. (1993). Toxicity of linear furanocoumarins toSpodoptera exigua: Evidence for antagonistic interactions. (11), 2473–2484. doi:10.1007/bf00980684

Schmitt, I. M., Chimenti, S., & Gasparro, F. P. (1995). Psoralen-protein photochemistry — a forgotten field. Journal of Photochemistry and Photobiology B: Biology, 27(2), 101–107. doi: 10.1016/1011-1344(94)07101-s

National Institute of Environmental Health Sciences. (1999). The Murine Local Lymph Node Assay. A Test Method for Assessing the Allergic Contact Dermatitis Potential of Chemicals/Compounds. Retrieved from https://ntp.niehs.nih.gov/iccvam/docs/immunotox_docs/llna/llnarep.pdf

Lalko, J. F., Kimber, I., Gerberick, G. F., Foertsch, L. M., Api, A. M., & Dearman, R. J. (2012). The Direct Peptide Reactivity Assay: Selectivity of Chemical Respiratory Allergens. Toxicological Sciences, 129(2), 421–431. doi: 10.1093/toxsci/kfs205

Nukada, Y., Ashikaga, T., Miyazawa, M., Hirota, M., Sakaguchi, H., Sasa, H., & Nishiyama, N. (2012). Prediction of skin sensitization potency of chemicals by human Cell Line Activation Test (h-CLAT) and an attempt at classifying skin sensitization potency. Toxicology in Vitro, 26(7), 1150–1160. doi: 10.1016/j.tiv.2012.07.001

Emter, R., van der Veen, J. W., Adamson, G., Ezendam, J., van Loveren, H., & Natsch, A. (2013). Gene expression changes induced by skin sensitizers in the KeratinoSens™ cell line: Discriminating Nrf2-dependent and Nrf2-independent events. Toxicology in Vitro, 27(8), 2225–2232. doi: 10.1016/j.tiv.2013.09.009

Flaten, G. E., Palac, Z., Engesland, A., Filipović-Grčić, J., Vanić, Ž., & Škalko-Basnet, N. (2015). In vitro skin models as a tool in optimization of drug formulation. European Journal of Pharmaceutical Sciences, 75, 10–24. doi: 10.1016/j.ejps.2015.02.018

Xu, J., & Hagler, A. (2002). Chemoinformatics and Drug Discovery. Molecules, 7(8), 566–600. doi: 10.3390/70800566

Wegner, J. K., Sterling, A., Guha, R., Bender, A., Faulon, J.-L., Hastings, J., … Willighagen, E. (2012). Cheminformatics. Communications of the ACM, 55(11), 65–75. doi: 10.1145/2366316.2366334

In silico investigation of possible caffeine interactions with common inflammation-related targets. (2019). Journal of Applied Biology & Biotechnology, 7(5), 31–34. doi: 10.7324/jabb.2019.70505

Thomaz, D. V., Rodrigues, E. S. B., & de Macedo, I. Y. L. (2019). Chemoinformatic Approaches in the Study of Fluralaner and Afoxolaner-mediated Inhibition of l-glutamate-gated Chloride Channels. Path of Science, 5(3), 4001–4007. doi: 10.22178/pos.44-6

Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., … Tropsha, A. (2014). QSAR Modeling: Where Have You Been? Where Are You Going To? Journal of Medicinal Chemistry, 57(12), 4977–5010. doi: 10.1021/jm4004285

Yang, S.-Y. (2010). Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discovery Today, 15(11-12), 444–450. doi: 10.1016/j.drudis.2010.03.013

Lino, R. C., da Silva, D. P. B., Florentino, I. F., da Silva, D. M., Martins, J. L. R., Batista, D. da C., … Costa, E. A. (2017). Pharmacological evaluation and molecular docking of new di-tert-butylphenol compound, LQFM-091, a new dual 5-LOX/COX inhibitor. European Journal of Pharmaceutical Sciences, 106, 231–243. doi: 10.1016/j.ejps.2017.06.006

Thomaz, D. V., Rodrigues, E. S. B., Machado, F. B., … Macedo, I. Y. L. (2019). Investigation of Cyclobenzaprine Interactions with P450 Cytochromes CYP1A2 and CYP3A4 through Molecular Docking Tools. Path of Science, 5(2), 4001–4006. doi: 10.22178/pos.43-1

Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Modeling, 28(1), 31–36. doi: 10.1021/ci00057a005

Rajanarendar, E., Rama Krishna, S., Nagaraju, D., Govardhan Reddy, K., Kishore, B., & Reddy, Y. N. (2015). Environmentally benign synthesis, molecular properties prediction and anti-inflammatory activity of novel isoxazolo[5,4-d]isoxazol-3-yl-aryl-methanones via vinylogous Henry nitroaldol adducts as synthons. Bioorganic & Medicinal Chemistry Letters, 25(7), 1630–1634. doi: 10.1016/j.bmcl.2015.01.041

Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. doi: 10.1021/acs.jmedchem.5b00104

Daina, A., & Zoete, V. (2019). Application of the SwissDrugDesign Online Resources in Virtual Screening. International Journal of Molecular Sciences, 20(18), 4612. doi:10.3390/ijms20184612

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1). doi: 10.1038/srep42717

Braga, R. C., Alves, V. M., Muratov, E. N., Strickland, J., Kleinstreuer, N., Trospsha, A., & Andrade, C. H. (2017). Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals. Journal of Chemical Information and Modeling, 57(5), 1013–1017. doi: 10.1021/acs.jcim.7b00194

Golden, E. (2020). Evaluation of the global performance of eight in silico skin sensitization models using human data. ALTEX. doi: 10.14573/altex.1911261

Dror, O., Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2009). Novel Approach for Efficient Pharmacophore-Based Virtual Screening: Method and Applications. Journal of Chemical Information and Modeling, 49(10), 2333–2343. doi: 10.1021/ci900263d

Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2008). PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Research, 36(Web Server), W223–W228. doi: 10.1093/nar/gkn187

Syms, C. (2008). Principal Components Analysis. Encyclopedia of Ecology, 2940–2949. doi: 10.1016/b978-008045405-4.00538-3

Deng, M., Xie, L., Zhong, L., Liao, Y., Liu, L., & Li, X. (2020). Imperatorin: A review of its pharmacology, toxicity and pharmacokinetics. European Journal of Pharmacology, 879, 173124. doi: 10.1016/j.ejphar.2020.173124

Aboul-Enein, H. Y., Kladna, A., Kruk, I., Lichszteld, K., & Michalska, T. (2002). Effect of psoralens on Fenton-like reaction generating reactive oxygen species. Biopolymers, 72(1), 59–68. doi: 10.1002/bip.10285

Fröbel, S., Reiffers, A., Torres Ziegenbein, C., & Gilch, P. (2015). DNA Intercalated Psoralen Undergoes Efficient Photoinduced Electron Transfer. The Journal of Physical Chemistry Letters, 6(7), 1260–1264. doi: 10.1021/acs.jpclett.5b00307

Kussmaul Gonçalves Moreno, E. (2019). Antioxidant Study and Electroanalytical Investigation of Selected Herbal Samples Used in Folk Medicine. International Journal of Electrochemical Science, 838–847. doi: 10.20964/2019.01.82

Thomaz, D. V., Peixoto, L. F., de Oliveira, T. S., Fajemiroye, J. O., da Silva Neri, H. F., Xavier, C. H., … Ghedini, P. C. (2018). Antioxidant and Neuroprotective Properties of Eugenia dysenterica Leaves. Oxidative Medicine and Cellular Longevity, 2018, 1–9. doi: 10.1155/2018/3250908

Vieira Thomaz, D. (2018). Assessment of Noni (Morinda citrifolia L.) Product Authenticity by Solid State Voltammetry. International Journal of Electrochemical Science, 8983–8994. doi: 10.20964/2018.09.390

Marzaro, G., Guiotto, A., Borgatti, M., Finotti, A., Gambari, R., Breveglieri, G., & Chilin, A. (2013). Psoralen Derivatives as Inhibitors of NF-κB/DNA Interaction: Synthesis, Molecular Modeling, 3D-QSAR, and Biological Evaluation. Journal of Medicinal Chemistry, 56(5), 1830–1842. doi: 10.1021/jm3009647

Giordanetto, F., Fossa, P., Menozzi, G., & Mosti, L. (2003). In silico rationalization of the structural and physicochemical requirements for photobiological activity in angelicine derivatives and their heteroanalogues. Journal of computer-aided molecular design, 17(1), 53–64. doi: 10.1023/a:1024557113083

Gia, O., Marciani Magno, S., Gonzalez-Diaz, H., Quezada, E., Santana, L., Uriarte, E., & Dalla Via, L. (2005). Design, synthesis and photobiological properties of 3,4-cyclopentenepsoralens. Bioorganic & Medicinal Chemistry, 13(3), 809–817. doi: 10.1016/j.bmc.2004.10.044

Vieira Thomaz, D. (2021). Thermodynamics and Kinetics of Camellia sinensis Extracts and Constituents: An Untamed Antioxidant Potential. Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health. doi: 10.5772/intechopen.92813

Leite, K. C. de S., Garcia, L. F., Lobón, G. S., Thomaz, D. V., Moreno, E. K. G., Carvalho, M. F. de, … Gil, E. de S. (2018). Antioxidant activity evaluation of dried herbal extracts: an electroanalytical approach. Revista Brasileira de Farmacognosia, 28(3), 325–332. doi: 10.1016/j.bjp.2018.04.004

Chaibub, B. A., Parente, L. M. L., Lino Jr, R. de S., Cirilo, H. N. C., Garcia, S. A. de S., Nogueira, J. C. M., … Bara, M. T. F. (2020). Investigation of wound healing activity of Lafoensia pacari (Lythraceae) leaves extract cultivated in Goiás state, Brazil. Rodriguésia, 71. doi: 10.1590/2175-7860202071058

Lima Morais, R., Ferreira Garcia, L., Kussmaul Gonçalves Moreno, E., Vieira Thomaz, D., De Brito Rodrigues, L., Barroso Brito, L., … Gil, E. D. S. (2019). Electrochemical remediation of industrial pharmaceutical wastewater containing hormones in a pilot scale treatment system. Eclética Química Journal, 44(1), 40. doi: 10.26850/1678-4618eqj.v44.1.2019.p40-52

Mensch, J., Melis, A., Mackie, C., Verreck, G., Brewster, M. E., & Augustijns, P. (2010). Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. European Journal of Pharmaceutics and Biopharmaceutics, 74(3), 495–502. doi: 10.1016/j.ejpb.2010.01.003

Li, Y., Duan, J., Guo, T., Xie, W., Yan, S., Li, B., … Chen, Y. (2009). In vivo pharmacokinetics comparisons of icariin, emodin and psoralen from Gan-kang granules and extracts of Herba Epimedii, Nepal dock root, Ficus hirta yahl. Journal of Ethnopharmacology, 124(3), 522–529. doi: 10.1016/j.jep.2009.05.008

Wang, Y.-F., Liu, Y.-N., Xiong, W., Yan, D.-M., Zhu, Y., Gao, X.-M., … Qi, A.-D. (2014). A UPLC–MS/MS method for in vivo and in vitro pharmacokinetic studies of psoralenoside, isopsoralenoside, psoralen and isopsoralen from Psoralea corylifolia extract. Journal of Ethnopharmacology, 151(1), 609–617. doi: 10.1016/j.jep.2013.11.013

De Wolff, F. A., & Thomas, T. V. (1986). Clinical Pharmacokinetics of Methoxsalen and Other Psoralens. Clinical Pharmacokinetics, 11(1), 62–75. doi: 10.2165/00003088-198611010-00004

Martins, F. S., Sy, S. K. B., Fonseca, M. J. V., & de Freitas, O. (2020). Pharmacokinetics, Pharmacodynamics and Dermal Distribution of 5-Methoxypsoralen Based on a Physiologically Based Pharmacokinetic Model to Support Phytotherapy Using Brosimum gaudichaudii. Planta Medica, 86(04), 276–283. doi: 10.1055/a-1087-8374

Wagner, J. G. (1988). Pharmacokinetic Studies in Man. Retrieved from https://www.ema.europa.eu/en/documents/scientific-guideline/pharmacokinetic-studies-man_en.pdf

Kenny, P. W. (2009). Hydrogen Bonding, Electrostatic Potential, and Molecular Design. Journal of Chemical Information and Modeling, 49(5), 1234–1244. doi: 10.1021/ci9000234

Ouellette, R. J., & Rawn, J. D. (2014). Organic Chemistry. Structure, Mechanism, and Synthesis. doi: 10.1016/c2013-0-14256-0

Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., DeBolt, S., … Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1-3), 1–41. doi: 10.1016/0010-4655(95)00041-d

Rodrigues, E. S. B., de Macêdo, I. Y. L., da Silva Lima, L. L., Thomaz, D. V., da Cunha, C. E. P., Teles de Oliveira, M., … de Souza Gil, E. (2019). Electrochemical Characterization of Central Action Tricyclic Drugs by Voltammetric Techniques and Density Functional Theory Calculations. Pharmaceuticals, 12(3), 116. doi: 10.3390/ph12030116

Thomaz, D., & Santos, P. (2021). Electrochemical behavior of Methotrexate upon binding to the DNA of different cell lines. Proceedings of The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response. doi: 10.3390/iecc2021-09215


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Douglas Vieira Thomaz, Matheus Gabriel de Oliveira, Vinicius Barreto da Silva, Pierre Alexandre dos Santos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.