Energy Characteristics of Composite BioFuel Based on Sunflower Husk

Yevhen Sklyarenko, Leonid Vorobiov

Abstract

The paper considers the prospect of using renewable energy sources in the country’s fuel balance. An important source of energy is biomass, which is characterized by renewability, accessibility, versatility, minimal impact on the environment, transportation, accumulation and storage. At the same time, biomass has a number of disadvantages: a heterogeneous structure with a broad fractional composition, with low bulk density and energy density, and high initial humidity, and often ash content. To improve the thermal characteristics and to increase the energy efficiency of using biomass, it is subjected to physical, biochemical or thermochemical conversion. An effective way to improve the thermal characteristics of the original biomass is to compress it in a mixture with other combustible materials, for example, organic waste from agriculture, oil refining, coal, paper industry, which allows, in particular, to solve environmental problems as well.

An estimation of the possibility of using organic waste from livestock and poultry farming in a composition with waste biomass of vegetable origin is conducted. The results of calorimetric studies of the calorific value of samples of such composite fuel, based on husk of sunflower seeds are presented.

Based on experimental research and calculations, empirical formulas were proposed to calculate the combustion heat of composite fuel, containing a mixture of sunflower husk, sludge, irrigation, chicken droppings and manure.

The dependence of the heat of combustion of composite fuel, produced from the waste of the biomass from agricultural production on humidity has been researched. Since briquetted fuel from such wastes has a significant hygroscopicity, it is recommended to provide appropriate conditions for its storage. It is concluded that during the long-term storage of poultry and livestock waste there may be biochemical processes that change the heat of combustion, indicating the need to take into account the terms and conditions of storage of the source components.

It is concluded that composite fuel from biomass waste from agricultural production can be a significant component of the country’s fuel balance, saving traditional fossil fuel. In addition, the disposal of these wastes contributes to the reduction of environmental pollution.



Keywords


biomass; composite fuel; calorific value; bomb calorimetry



References


Kaletnik, H. (2010). Biopalyvo. Prodovolcha, enerhetychna ta ekonomichna bezpeka Ukrainy [Biofuels. Food, energy and economic security of Ukraine]. Kyiv: Khai-Tek Pres (in Ukrainian)
[Калетнік, Г. (2010). Біопаливо. Продовольча, енергетична та економічна безпека України. Київ: Хай-Тек Прес].

Heletukha, H., Zheliezna, T., & Drozdova, O. (2013). Kompleksnyi analiz tekhnolohii vyrobnytstva enerhii z tverdoi biomasy v Ukraini. Chastyna 1. Soloma [Complex analysis of technologies for energy production from solid biomass. Part 1. Straw]. Promyshlennaja teplotehnika, 35(3), 56–63 (in Ukrainian)
[Гелетуха, Г., Желєзна, Т., & Дроздова, О. (2013). Комплексний аналіз технологій виробництва енергії з твердої біомаси в Україні. Частина 1. Солома. Промышленная теплотехника, 35(3), 56–63].

Protsyshyn, B., Vorobiov, L., Lokh, Ye., Pavliuk, S., & Hordiienko, P. (2006). Vyrobnytstvo kompozytsiinykh palyv z vidkhodiv promyslovosti ta silskoho hospodarstva [Production of composite fuels from industrial and agricultural waste]. Promyshlennaja teplotehnika, 28(2), 46–50 (in Ukrainian)
[Процишин, Б., Воробйов, Л., Лох, Є., Павлюк, С., & Гордієнко, П. (2006). Виробництво композиційних палив з відходів промисловості та сільського господарства. Промышленная теплотехніка, 28(2), 46–50].

Vorob'ev, L., Grabov, L., Dekusha, L., Nazarenko, O., & Shmatok, A. (2011). Opredelenie teplotvornoj sposobnosti biotoplivnyh smesej [Definition of calorific efficiency of biofuel’s mixes]. Promyshlennaja teplotehnika, 33(4), 87–93 (in Russian)
[Воробьев, Л., Грабов, Л., Декуша, Л., Назаренко, О., & Шматок, А. (2011). Определение теплотворной способности биотопливных смесей. Промышленная теплотехника, 33(4), 87–93].

Sigal, O., Boulanger, Q., Vorobiov, L., Pavliuk, N., … Serhiienko, R. (2018). Research of the Energy Characteristics of Municipal Solid Waste in Cherkassy. Journal of Engineering Sciences, 5(1), H16–H22. doi: 10.21272/jes.2018.5(1).h3

Vorob'ev, L., Grishhenko, T., & Dekusha, L. (1997). Bombovye kalorimetry dlja opredelenija teploty sgoranija topliva [Bomb calorimeters to determine the heat of combustion of fuel]. Inzhenerno-fizicheskij zhurnal, 70(5), 828–839 (in Russian)
[Воробьев, Л., Грищенко, Т., & Декуша, Л. (1997). Бомбовые калориметры для определения теплоты сгорания топлива. Инженерно-физический журнал, 70(5), 828–839].

Ministerstvo ekonomichnoho rozvytku Ukrainy. (2015). Tverde biopalyvo. Vyznachennia vmistu volohy. Metod vysushuvannia v sushylnii shafi. Chastyna 2. Zahalna voloha. Sproshchenyi metod [Iofuels solid. Determination of moisture. Content oven dry method. Part 1. Total moisture. Reference method] (DSTU EN 14774-2:2012). Kyiv: Minekonomrozvytku (in Ukrainian).
[Міністерство економічного розвитку України. (2015). Тверде біопаливо. Визначення вмісту вологи. Метод висушування в сушильній шафі. Частина 2. Загальна волога. Спрощений метод (ДСТУ ЕN 14774-2:2012). Київ: Мінекономрозвитку].

Gosstandart Ukrainy. (1997). Toplivo tverdoe mineral'noe. Opredelenie vysshej teploty sgoranija i vychislenie nizshej teploty sgoranija [Solid mineral fuel. Determination of the highest combustion heat and calculation of the lowest combustion heat] (GOST 147-95). Kiev: Gosstandart Ukrainy (in Russian)
[Госстандарт Украины. (1997). Топливо твердое минеральное. Определение высшей теплоты сгорания и вычисление низшей теплоты сгорания (ГОСТ 147-95). Киев: Госстандарт Украины].

Ministerstvo ekonomichnoho rozvytku Ukrainy. (2016). Tverde biopalyvo. Metod vyznachennia teplotvornoi zdatnosti [Solid biofuels. Method of determining the calorific value] (DSTU EN 14918:2016). Kyiv: Minekonomrozvytku (in Ukrainian)
[Міністерство економічного розвитку України. (2016). Тверде біопаливо. Метод визначення теплотворної здатності (ДСТУ EN 14918:2016). Київ: Мінекономрозвитку].

Obidzinski, S. (2006). Biomass. Retrieved February 1, 2019, from http://www.pnec.org.pl/moldova/poradnik.pdf (in Russian)
[Обидзински, С. (2006). Биомасса. Актуально на 01.02.2019. URL: http://www.pnec.org.pl/moldova/poradnik.pdf].

Klyus, V. (2015). Avtotermicheskaya tekhnologiya karbonizatsii ptich'yego pometa [Autothermal technology of bird droppings carbonization]. Vídnovlyuvana yenergetika, 2, 84–87. (in Russian)
[Клюс, В. П. (2015). Автотермическая технология карбонизации птичьего помета. Відновлювана енергетика, 2, 84–87].

Dlja pticevodov. (n. d.). Szhiganiye podstilochnogo pometa: za i protiv [Burning of litter droppings: for and against]. Retrieved February 1, 2019, from http://ptitcevod.ru/reprodukciya/soderzhanie-pticy/szhiganie-podstilochnogo-pometa-za-i-protiv.html (in Russian)
[Для птицеводов. (n. d.). Сжигание подстилочного помета: за и против. Актуально на 01.02.2019. URL: http://ptitcevod.ru/reprodukciya/soderzhanie-pticy/szhiganie-podstilochnogo-pometa-za-i-protiv.html].

Dekusha, L., Vorobiov, L., Hryshchenko, T., Burova, Z., Nazarenko, O., & Mazurenko, O. (2011). Kvazidyferentsiinyi kalorymetr teplovoho potoku dlia vyznachennia teploty zghoriannia [Quasidifferential calorimeter for the heat flow to determine the heat of combustion]. Metrolohiia ta prylady, 5, 27–31 (in Ukrainian).
[Декуша, Л., Воробйов, Л., Грищенко, Т., Бурова, З., Назаренко, О., & Мазуренко, О. (2011). Квазідиференційний калориметр теплового потоку для визначення теплоти згоряння. Метрологія та прилади, 5, 27–31].


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Yevhen Sklyarenko, Leonid Vorobiov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.