Investigation of Cyclobenzaprine Interactions with P450 Cytochromes CYP1A2 and CYP3A4 through Molecular Docking Tools

Douglas Vieira Thomaz, Edson Silvio Batista Rodrigues, Fabio Bahls Machado, Isaac Yves Lopes Macedo

Abstract

Cyclobenzaprine (CBP) is a centrally acting muscle relaxant whose myriad of therapeutic applications imply the need of better understanding its pharmacokinetics and thermodynamics. Henceforth, this work was concerned with an in silico investigation of CBP main metabolizers in the human organism, namely CYP1A2 and CYP3A4. For this purpose, computational methods were employed, such as molecular docking and other semi-empirical approaches. Results evidenced that the model herein depicted for CBP-CYP1A2 may not reproducibly represent the physiological interaction between CBP and this enzyme. Moreover, CBP-CYP3A4 docking results evidence thermodynamic feasibility of the molecular docking model and were further corroborated by literature, what may reproducibly represent a possible interaction between CBP and this macromolecule.



Keywords


tricyclic; cheminformatics; redox enzymes; metabolism; pharmacokinesis

Full Text:

PDF


References


Amaro, R. E., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., Miao, Y., & Smith, J. C. (2018). Ensemble Docking in Drug Discovery. Biophysical Journal, 114(10), 2271–2278. doi: 10.1016/j.bpj.2018.02.038

Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. doi: 10.1002/jcc.20290

Cosconati, S., Forli, S., Perryman, A. L., Harris, R., Goodsell, D. S., & Olson, A. J. (2010). Virtual screening with AutoDock: theory and practice. Expert Opinion on Drug Discovery, 5(6), 597–607. doi: 10.1517/17460441.2010.484460

Darwish, H. W., Naguib, I. A., & Darwish, I. A. (2018). Five modified classical least squares based models for stability indicating analysis of cyclobenzaprine HCl with its major degradation products: A comparative study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 598–602. doi: 10.1016/j.saa.2018.06.101

De Santana Santos, T., Calazans, A. C. M., Martins-Filho, P. R. S., Silva, L. C. F. da, de Oliveira e Silva, E. D., & Gomes, A. C. A. (2011). Evaluation of the muscle relaxant cyclobenzaprine after third-molar extraction. The Journal of the American Dental Association, 142(10), 1154–1162. doi: 10.14219/jada.archive.2011.0084

García-Nieto, J., López-Camacho, E., García-Godoy, M. J., Nebro, A. J., & Aldana-Montes, J. F. (2019). Multi-objective ligand-protein docking with particle swarm optimizers. Swarm and Evolutionary Computation, 44, 439–452. doi: 10.1016/j.swevo.2018.05.007

Gupta, M., Sharma, R., & Kumar, A. (2018). Docking techniques in pharmacology: How much promising? Computational Biology and Chemistry, 76, 210–217. doi: 10.1016/j.compbiolchem.2018.06.005

Jiang, X., Tsona, N. T., Tang, S., & Du, L. (2018). Hydrogen bond docking preference in furans: O H ⋯ π vs. O H ⋯ O. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 191, 155–164. doi: 10.1016/j.saa.2017.10.006

Khorasani, R., & Fleming, P. E. (2016). On calculating HR bond enthalpies using computational data. Computational and Theoretical Chemistry, 1096, 89–93. doi: 10.1016/j.comptc.2016.09.033

Kumar, S. P. (2018). PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions. Journal of Molecular Graphics and Modelling, 79, 194–212. doi: 10.1016/j.jmgm.2017.12.002

Lynch, D. E., & Reeves, C. R. (2019). Statistical analysis of the effect of a single O H hydrogen-bonding interaction on carbonyl bond lengths. Journal of Molecular Structure, 1180, 158–162. doi: 10.1016/j.molstruc.2018.11.100

Mena-Ulecia, K., & MacLeod-Carey, D. (2018). Interactions of 2-phenyl-benzotriazole xenobiotic compounds with human Cytochrome P450-CYP1A1 by means of docking, molecular dynamics simulations and MM-GBSA calculations. Computational Biology and Chemistry, 74, 253–262. doi: 10.1016/j.compbiolchem.2018.04.004

Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146–157. doi: 10.2174/157340911795677602

Morris, G. M., & Lim-Wilby, M. (2008). Molecular Docking. Molecular Modeling of Proteins, 365–382. doi: 10.1007/978-1-59745-177-2_19

Ramesh, M., & Bharatam, P. V. (2014). Importance of hydrophobic parameters in identifying appropriate pose of CYP substrates in cytochromes. European Journal of Medicinal Chemistry, 71, 15–23. doi: 10.1016/j.ejmech.2013.10.023

Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2012). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. doi: 10.1002/wcms.1121

Share, N. N., & McFarlane, C. S. (1975). Cyclobenzaprine: A novel centrally acting skeletal muscle relaxant. Neuropharmacology, 14(9), 675–684. doi: 10.1016/0028-3908(75)90091-x

Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, NA–NA. doi: 10.1002/jcc.21334

Wang, R. W., Liu, L., Cheng, H. (1996). Identification of human liver cytochrome P450 isoforms involved in the in vitro metabolism of cyclobenzaprine. Drug Metabolism and Disposition, 24(7), 786–791.

Winchell, G. A., King, J. D., Chavez-Eng, C. M., Constanzer, M. L., & Korn, S. H. (2002). Cyclobenzaprine pharmacokinetics, including the effects of age, gender, and hepatic insufficiency. The Journal of Clinical Pharmacology, 42(1), 61–69.

Wu, M.-Y., Dai, D.-Q., & Yan, H. (2012). PRL-dock: Protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling. Proteins: Structure, Function, and Bioinformatics, 80(9), 2137–2153. doi: 10.1002/prot.24104

Yang, Y. W., Macdonald, J. B., Nelson, S. A., & Sekulic, A. (2017). Treatment of vismodegib-associated muscle cramps with cyclobenzaprine: A retrospective review. Journal of the American Academy of Dermatology, 77(6), 1170–1172. doi: 10.1016/j.jaad.2016.12.017

Zhang, D., Evans, F. E., Freeman, J. P., Yang, Y., Deck, J., & Cerniglia, C. E. (1996). Formation of mammalian metabolites of cyclobenzaprine by the fungus, Cunninghamella elegans. Chemico-Biological Interactions, 102(2), 79–92. doi: 10.1016/s0009-2797(96)03736-2

Zhang, T.-T., Xue, R., Wang, X., Zhao, S.-W., An, L., Li, Y.-F., … Li, S. (2018). Network-based drug repositioning: A novel strategy for discovering potential antidepressants and their mode of action. European Neuropsychopharmacology, 28(10), 1137–1150. doi: 10.1016/j.euroneuro.2018.07.096

Zhao, H., Tang, S., & Du, L. (2017). Hydrogen bond docking site competition in methyl esters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 181, 122–130. doi: 10.1016/j.saa.2017.03.038


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Douglas Vieira Thomaz, Edson Silvio Batista Rodrigues, Fabio Bahls Machado, Isaac Yves Lopes Macedo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.