Improving the Technology of Obtaining Technical Ethanol from Alternative Raw Materials

Sergіj Petrov, Oleg Chaika

Abstract

The purpose of the article is to study the properties of fallen leaves as raw materials for the production of bioethanol; Improvement of the technology of recycling cellulosic raw materials into bioethanol in the most energy-efficient and ecological way.

As a result of the study, it has been found out that the production of biofuels from renewable raw materials is characterized by features of innovative technology: the rapid growth of this sector of economy is accompanied by a significant increase in market share. The use of fallen leaves as raw material will eliminate the current conflict of interests associated with the use of food raw materials for the production of bioethanol, will prevent the withdrawal of resources from the sphere of food production. Significant positive factors in the production and use of biofuels are improvement of environmental conditions, reduction of the harmful effects of exhaust gases on the human body, reducing environmental pollution and, consequently, reducing morbidity and associated costs of medical care. The use of bioethanol as an ecobiopilot makes it possible to increase the octane number of fuel, and, accordingly, increase the efficiency of the engine. Thus, the use of bioethanol leads to a qualitative improvement of technical and economic indicators, which is also an indicator of innovation. The threat of reducing (exhausting) non-renewable sources of energy is also the factor that necessitates the development and improvement of biofuel production technology.

The relatively low profitability of biofuel production is due to the low yield of the target product and the high cost of pre-treatment of cellulose raw materials. The method of obtaining bioethanol from renewable non-demanded raw materials - fallen leaves - was improved. The technique allows to increase the bioethanol yield due to more effective hydrolysis of hard-hydrolysable polysaccharides.

Further development of the study of the differences in the microelement composition of leaves collected near environmentally-polluting industries and streets with busy traffic, on the one hand, and ecologically clean territories, on the other hand, has been further developed. With the help of spectral analysis it was established that the microelement composition of fallen leaves varies considerably depending on the place of collection. This circumstance should be taken into account when organizing the collection of raw materials for further processing of bioethanol.

The results of the study can be used in practical work related to the introduction of environmentally friendly technologies for the processing of renewable unclaimed raw materials.

Further research perspectives may be related to the deeper study of the relationship between the degree of contamination of the raw material collection area for the production of bioethanol and the trace element composition of the final product. Also, further research perspectives may be related to the specification of the degree of innovation of the proposed technology and the calculation of its economic efficiency.



Keywords


ethanol; green chemistry; ecology; cellulose; hydrolysis of cellulose; obtaining ethanol; technical alcohol



References


1. Boyce, J. R. (2013). Prediction and Inference in the Hubbert-Deffeyes Peak Oil Model. The Energy Journal, 34(2).

[Google Scholar] [CrossRef]

2. Chachina, S. B., & Dvojan, A. V. (2014). Poluchenie biojetanola iz organicheskogo syr’ja [Getting bioethanol from organic raw materials]. Omskij nauchnyj vestnik, 2(134), 224–228 (in Russian)
[Чачина, С. Б., & Двоян, А. В. (2014). Получение биоэтанола из органического сырья. Омский научный вестник, 2(134), 224–228].

[Google Scholar]

3. European Parliament and of the Council. (2009). Official Journal of the European Union, L 140/16. Retrieved May 16, 2018, from http://data.europa.eu/eli/dir/2009/28/oj

4. Erkina, N. V. (2012). Zdorov’e naselenija v kontekste jekologicheskogo monitoringa vozdushnoj sredy urbosistemy [Public health in the context of environmental monitoring of the urban environment]. Uchenye zapiski Tavricheskogo nacional’nogo universiteta im. V. I. Vernadskogo, 25(1), 75–83 (in Russian)
[Еркина, Н. В. (2012). Здоровье населения в контексте экологического мониторинга воздушной среды урбосистемы. Ученые записки Таврического национального университета им. В. И. Вернадского, 25(1), 75–83].

[Google Scholar]

5. Garmash, S. N., Gerasimenko, V. A., & Runova, G. G. (2015). Ekobiotechnology of processing of the wastes for the receipt of bioethanol. Construction, materials science, mechanical engineering, 83, 77–82.

[Google Scholar]

6. Glick, B. R., & Pasternak, J. J. (2017). Molecular biotechnology: principles and applications of recombinant DNA (5th ed.). Washington: ASM press.

[Google Scholar]

7. Jacenkova, O. V., Pen, R. Z., Skripnikov, A. M., Beregovcova, N. G., & Kuznecov, B. N. (2016). Optimizacija processa gidroliza mikrokristallicheskoj celljulozy koncentrirovannoj sernoj kislotoj [Optimization of the process of hydrolysis of microcrystalline cellulose with concentrated sulfuric acid]. Himija v interesah ustojchivogo razvitija, 24(6), 811–819 (in Russian)
[Яценкова, О. В., Пен, Р. З., Скрипников, А. М., Береговцова, Н. Г., & Кузнецов, Б. Н. (2016). Оптимизация процесса гидролиза микрокристаллической целлюлозы концентрированной серной кислотой. Химия в интересах устойчивого развития, 24(6), 811–819.

[Google Scholar] [CrossRef]

8. Kuznecov, B. H., Kuznecova, S. A., & Taraban’ko, V. E. (2004). Novye metody poluchenija himicheskih produktov iz biomassy derev’ev sibirskih porod [New methods of obtaining chemical products from the biomass of trees of Siberian breeds]. Rossijskij himicheskij zhurnal, 3(48), 4–20 (in Russian)
[Кузнецов, Б. H., Кузнецова, С. А., & Тарабанько, В. Е. (2004). Новые методы получения химических продуктов из биомассы деревьев сибирских пород. Российский химический журнал, 3(48), 4–20].

[Google Scholar]

9. Ministerstvo enerhetyky ta vuhilnoi promyslovosti Ukrainy. (2013). Prohnozne otsiniuvannia ta khid osvoiennia vydobuvannia netradytsiinykh dzherel pryrodnoho hazu v umovakh konkurentsii na enerhetychnomu rynku [Forecast assessment and development of extraction of non-traditional sources of natural gas in conditions of competition in the energy market]. Kyiv: Ukrenerho (in Ukrainian)
[Міністерство енергетики та вугільної промисловості України. (2013). Прогнозне оцінювання та хід освоєння видобування нетрадиційних джерел природного газу в умовах конкуренції на енергетичному ринку. Київ: Укренерго].

10. Pope, C. A., Brook, R. D., Burnett, R. T., & Dockery, D. W. (2011). How is cardiovascular disease mortality risk affected by duration and intensity of fine particulate matter exposure? An integration of the epidemiologic evidence. Air Quality, Atmosphere & Health, 4(1), 5–14.

[Google Scholar] [CrossRef]

11. Shmidt K. N., & Hudajgulov, G. G. (2016). Vydelenie novyh shtammov-destruktorov celljulozy, ih rol’ v snizhenii antropogennoj nagruzki na jekosistemu [Isolation of new cellulose destruction strains, their role in the decrease of anthropogenic load to the ecosystem]. Vestnik Juzhno-Ural’skogo gosudarstvennogo universiteta, 4(4), 54–63 (in Russian)
[Шмидт К. Н., & Худайгулов, Г. Г. (2016). Выделение новых штаммов-деструкторов целлюлозы, их роль в снижении антропогенной нагрузки на экосистему. Вестник Южно-Уральского государственного университета, 4(4), 54–63].

[Google Scholar]

12. Traviss, N. (2012). Breathing easier? The known impacts of biodiesel on air quality. Biofuels, 3(3), 285–291.

[Google Scholar]

13. Trofimova, N. N., & Babkin, V. A. (2009). Izuchenie kislotnogo gidroliza polisaharidov drevesiny listvennicy dlja poluchenija kristallicheskoj gljukozy [Study of acid hydrolysis of larch polysaccharides to obtain crystalline glucose]. Himija rastitel’nogo syr’ja, 3, 31–34 (in Russian)
[Трофимова, Н. Н., & Бабкин, В. А. (2009). Изучение кислотного гидролиза полисахаридов древесины лиственницы для получения кристаллической глюкозы. Химия растительного сырья, 3, 31–34].

[Google Scholar]

14. Vil’danov, F. Sh., Latypova, F. N., Chanyshev, R. R., & Nikolaeva, S. V. (2011). Sovremennye metody poluchenija biojetanola [Modern methods of production of bioethanol]. Bashkirskij himicheskij zhurnal, 18(2), 128–134 (in Russian)
[Вильданов, Ф. Ш., Латыпова, Ф. Н., Чанышев, Р. Р., & Николаева, С. В. (2011). Современные методы получения биоэтанола. Башкирский химический журнал, 18(2), 128–134].

[Google Scholar]


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Sergіj Petrov, Oleg Chaika

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.