Information Resources Economy in Satellite Systems based on New Microwave Polarizers with Tunable Posts

Stepan Piltyay, Andrew Bulashenko, Hanna Kushnir, Oleksandr Bulashenko

Abstract

One of the fundamental problems of modern digital telecommunications is the economy of digital information and frequency resources, which are highly limited. The introduction of novel telecommunication systems and 5G networks requires the search of principal solutions for economy and reusing of frequency spectrum. Therefore, modern wireless mobile, terrestrial and satellite systems use variety of new technologies to increase the information capacity of communication channels for the economy of limited frequency resources. One of the most effective ways to reuse the operating frequency band of the information system is to apply antennas with polarization signal processing. Such systems provide the possibility to transmit and to receive simultaneously signals with different types of polarization. Consequently, the application of electromagnetic waves with two orthogonal polarizations improves the information characteristics of wireless systems for various purposes. This allows to double the information capacity of mobile, terrestrial and satellite communication channels. In addition, polarization processing is carried out in meteorological and radar systems for receiving, transmitting and processing of information. The essential elements of such systems are microwave polarizers and orthomode transducers. The electromagnetic characteristics of these devices affect greatly the characteristics of the whole system. Main electromagnetic characteristics include phase, matching and polarization parameters. The article presents the results of development of a compact tunable polarizer based on a square waveguide with three posts. The developed polarizer operates in the X-band from 8.0 GHz to 8.5 GHz. Created mathematical model of the polarizer is based on the scattering and transmission matrices. To verify correctness of the developed theoretical model the calculation of all characteristics was also performed numerically using the finite integration technique. The developed compact polarizer based on a square waveguide with three posts allows to tune its matching and polarization characteristics by changing the heights of all posts. The main advantages of the developed polarizer are small dimensions, the tuning option and stability of characteristics of polarization transformation.

 




Keywords


information resources; satellite systems; circular polarization; microwave polarizer; waveguide polarizer; tunable polarizer; frequency spectrum; differential phase shift; cross-polar discrimination; axial ratio

Full Text:

PDF


References


Bulashenko, A. V. (2020). Evaluation of D2D Communications in 5G networks. Visnik NTUU KPI. Seriia – Radiotekhnika, Radioaparatobuduvannia, 81, 21–29.

Gladun, V. V. & Bulashenko, A. V. (2019). Obtaining of high quality 5G network with D2D technology. Retrieved from https://ela.kpi.ua/bitstream/123456789/35676/1/RTPSAS_2019_s1_t16.pdf

Bulashenko, A. V. (2020). Resource allocation for low-power devices of m2m technology in 5g networks. KPI Science News, 3, 7–13. doi: 10.20535/kpi-sn.2020.3.203863

Myronchuk, O., Shpylka, O., & Zhuk, S. (2020). Two-Stage Channel Frequency Response Estimation in OFDM Systems. Path of Science, 6(2), 1001–1007. doi: 10.22178/pos.55-1

Myronchuk, O. Y., Shpylka, O. O., & Zhuk, S. Y. (2019). Channel frequency response estimation method based on pilot's filtration and extrapolation. Visnik NTUU KPI. Seriia – Radiotekhnika, Radioaparatobuduvannia, 78, 36–42.

Gao, S., Luo, Q., & Zhu, F. (2014). Circularly polarized Antennas Theory and Design. Chichester: John Wiley and Sons.

Stutzman, W. L. (2018). Polarization in Electromagnetic Systems. Norwood: Artech House.

Dubrovka, F. F., & Piltyay, S. I. (2017). Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds. 2017 XI International Conference on Antenna Theory and Techniques (ICATT). doi: 10.1109/icatt.2017.7972642

Piltyay, S. I. (2014). Enhanced C-band coaxial orthomode transducer. Visnik NTUU KPI. Seriia – Radiotekhnika, Radioaparatobuduvannia, 58, 27–34.

Virone, G., Tascone, R., Peverini, O. A., Addamo, G., & Orta, R. (2008). Combined-Phase-Shift Waveguide Polarizer. IEEE Microwave and Wireless Components Letters, 18(8), 509–511. doi: 10.1109/lmwc.2008.2001005

Piltyay, S. I., Bulashenko, A. V., & Demchenko, I. V. (2020). Waveguide Iris Polarizers for Ku-band Satellite Antenna Feeds. Journal of Nano- and Electronic Physics, 12(5), 05024–1–05024–5. doi: 10.21272/jnep.12(5).05024

Bulashenko, А. V, Piltyay, S. I. & Demchenko, I. V. (2020). Optimization of a polarizer based on a square waveguide with irises. Science-Based Technologies, 47(3). doi: 10.18372/2310-5461.47.14878

Piltyay, S. I. & Dubrovka, F. F. (2013). Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory. Visnyk NTUU KPI. Seriia – Radioteknika Radioaparatobuduvannia, 54, 13–23.

Dubrovka, F. F., & Piltyay, S. I. (2014). Eigenmodes of coaxial quad-ridged waveguides. Theory. Radioelectronics and Communications Systems, 57(1), 1–30. doi: 10.3103/s0735272714010014

Dubrovka, F. F., & Piltyay, S. I. (2014). Eigenmodes of coaxial quad-ridged waveguides. Numerical results. Radioelectronics and Communications Systems, 57(2), 59–69. doi: 10.3103/s0735272714020010

Piltyay, S. I. (2017). High performance extended C-band 3.4–4.8 GHz dual circular polarization feed system. 2017 XI International Conference on Antenna Theory and Techniques (ICATT). doi: 10.1109/icatt.2017.7972644

Dubrovka, F. F. & Piltyay, S. I. (2012). Prediction of Eigenmodes Cutoff Frequencies of Sectoral Coaxial Ridged. Retrieved from http://ena.lp.edu.ua/bitstream/ntb/14306/1/124.pdf

Lech, R., & Mazur, J. (2004). Propagation in rectangular waveguides periodically loaded with cylindrical posts. IEEE Microwave and Wireless Components Letters, 14(4), 177–179. doi: 10.1109/lmwc.2004.827106

Zhu, Q. C., Williamson, A. G., & Neve, M. J. (2007). Reactance of Posts in Circular Waveguide. IEEE Transactions on Microwave Theory and Techniques, 55(8), 1685–1688. doi: 10.1109/tmtt.2007.901605

Sharma, S. B., Singh, V. K., Dey, R., & Chakrabarty, S. (2009). Analysis of a Post Discontinuity in an Oversized Circular Waveguide. IEEE Transactions on Microwave Theory and Techniques, 57(8), 1989–1995. doi: 10.1109/tmtt.2009.2025448

Roelvink, J., & Williamson, A. G. (2010). Three Transverse Cylindrical Posts in a Rectangular Waveguide. IEEE Microwave and Wireless Components Letters, 20(5), 253–255. doi: 10.1109/lmwc.2010.2045578

Casaletti, M., Sauleau, R., Ettorre, M., & Maci, S. (2012). Efficient Analysis of Metallic and Dielectric Posts in Parallel-Plate Waveguide Structures. IEEE Transactions on Microwave Theory and Techniques, 60(10), 2979–2989. doi: 10.1109/tmtt.2012.2209449

Archemashvili, E., Yasumoto, K., Jandieri, V., Pistora, J., Maeda, H., & Erni, D. (2020). Numerical Analysis of Dielectric Post-Wall Waveguides. 2020 International Workshop on Antenna Technology (iWAT). doi: 10.1109/iwat48004.2020.1570608549

Chittora, A., & Yadav, S. V. (2020). A Compact Circular Waveguide Polarizer with Higher Order Mode Excitation. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). doi: 10.1109/conecct50063.2020.9198499

Deutschmann, B., & Jacob, A. F. (2020). Broadband Septum Polarizer With Triangular Common Port. IEEE Transactions on Microwave Theory and Techniques, 68(2), 693–700. doi: 10.1109/tmtt.2019.2951138

Dubrovka, F. F., Piltyay, S. I., Dubrovka, R. R., Lytvyn, M. M., & Lytvyn, S. M. (2020). Optimum Septum Polarizer Design for Various Fractional Bandwidths. Radioelectronics and Communications Systems, 63(1), 15–23. doi: 10.3103/s0735272720010021

Kirilenko, A. A., Steshenko, S. O., Derkach, V. N., & Ostryzhnyi, Y. M. (2019). A Tunable Compact Polarizer in a Circular Waveguide. IEEE Transactions on Microwave Theory and Techniques, 67(2), 592–596. doi: 10.1109/tmtt.2018.2881089

Agnihotri, I., & Sharma, S. K. (2019). Design of a Compact 3-D Metal Printed Ka-band Waveguide Polarizer. IEEE Antennas and Wireless Propagation Letters, 18(12), 2726–2730. doi: 10.1109/lawp.2019.2950312

Sellal, K., Talbi, L., Denidni, T., & Lebel, J. (2006). A New Substrate Integrated Waveguide Phase Shifter. 2006 European Microwave Conference. doi: 10.1109/eumc.2006.281184

Polo-Lopez, L., Masa-Campos, J. L., & Ruiz-Cruz, J. A. (2017). Design of a reconfigurable rectangular waveguide phase shifter with metallic posts. 2017 12th European Microwave Integrated Circuits Conference (EuMIC). doi: 10.23919/eumic.2017.8230730

Piltyay S. I., Sushko O. Yu., Bulashenko A. V., Demchenko I. V. (2020). Compact Ku-band iris polarizers for satellite telecommunication systems. Telecommunications and Radio Engineering, 79(19), 1673–1690. doi: 10.1615/TelecomRadEng.v79.i19.10

Piltyay S. I., Bulashenko A. V., Demchenko I. V. (2020). Analytical synthesis of waveguide iris polarizers. Telecommunications and Radio Engineering, 79(18), 1579–1597. doi: 10.1615/TelecomRadEng.v79.i18.10

Piltyay S. I. (2012). Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides. 14-th International Conference on Mathematical Methods in Electromagnetic Theory. doi: 10.1109/MMET.2012.6331195

Dubrovka F., Piltyay S., Sushko O., et al. (2020). Compact X-band stepped-thickness septum polarizer. IEEE Ukrainian Microwave Week (UkrMW). doi: 10.1109/UkrMW49653.2020.9252583

Dubrovka, F., Martunyuk, S., Dubrovka, R., Lytvyn, M., Lytvyn, S., Ovsianyk, Y., … Zakharchenko, O. (2020). Circularly Polarised X-Band H11- and H21-Modes Antenna Feed for Monopulse Autotracking Ground Station : Invited Paper. 2020 IEEE Ukrainian Microwave Week (UkrMW). doi: 10.1109/ukrmw49653.2020.9252600

Bulashenko A. V., Piltyay S. I., Kalinichenko Y. I., Bulashenko O. V. (2020). Tunable square waveguide polarizer with irises and posts. Technical Engineering, 86(2), 108–116.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Stepan Piltyay, Andrew Bulashenko, Hanna Kushnir, Oleksandr Bulashenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.