Screening of Kunun-zaki for Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-Resistant Staphylococcus aureus (VRSA) and Extended-Spectrum Beta-Lactamase (ESBL) Producing Salmonella spp.

Edward Kelechi, Daniel Emeaso, Alozie Chukwuemeka, Owuamalam Precious, Onyekachi Onyedikachi


Kunun-zaki is an indigenous, fermented, non-alcoholic cereal-based beverage produced and consumed primarily in Northern Nigeria. Due to its high nutritional and moisture content, it provides an ideal environment for the growth of foodborne pathogens. This study determined the presence of Methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Staphylococcus aureus (VRSA) and Extended spectrum beta lactamase (ESBL) producing Salmonella spp in Kunun-zaki sold in Umuahia metropolis, Nigeria. Out of the 40 Kunun-zaki samples examined, Salmonella spp was detected in 19 (47.5%), whereas S. aureus was detected in 22 (55%) of the samples. The total Salmonella count ranged from 1.90×105-9.70×106 (CFU/ml), whereas the total S. aureus count ranged from 3.40×104-7.50×106 (CFU/ml); these microbial counts do not conform to the standard limits of detectable microbes in ready-to-eat food samples as stipulated by the Center for Food Safety. All the isolates were subjected to antibiotic susceptibility testing using the modified Kirby Bauer disc diffusion method. On the one hand, most of the Salmonella spp were resistant to the beta-lactam class of antibiotics used (IMP 58%, MEM 90%, AMP 53%). On the other hand, the Salmonella isolates showed the highest sensitivities to ceftazidime (95%) and ofloxacin (90%). The S. aureus isolates revealed high susceptibility to the ofloxacin (96%), and major resistance to oxacillin (41%) and the oxyimino-cephalosporin antibiotics used (CAZ 55%, CTR 41%). MRSA, VRSA and ESBL producing Enterobacteriaceae are amongst the most critical multidrug-resistant bacterial pathogens. In this study, 26% of the Salmonella spp isolates were confirmed to be ESBL producers, whereas 41% of the isolates were MRSA, 23% were VRSA, and 68% were Vancomycin intermediate Staphylococcus aureus (VISA). Hence, the Kunun-zaki could constitute a reservoir for the dissemination of multidrug-resistant foodborne pathogens if not correctly quality controlled.


Kunun-zaki; Staphylococcus aureus; Salmonella spp; Extended spectrum beta-lactamase (ESBL); Methicillin-resistant Staphylococcus aureus (MRSA); Vancomycin-resistant Staphylococcus aureus (VRSA); Multidrug resistance (MDR)

Full Text:



Maji, A. A., James, O., & Chigozie, O. E. (2011). Effects of chemical treatment and pasteurization on the shelf life of Kunun-zaki (sorghum and maize gruel). European Journal of Nutrition and Food Safety, 1(2), 61–70.

Efiuvwevwere, B., & Akona, O. (1995). The microbiology of ‘Kunun-zaki’, a cereal beverage from Northern Nigeria, during the fermentation (production) process. World Journal of Microbiology and Biotechnology, 11(5), 491–493.

Akoma, O., Jiya, E., Akumka, D., & Mshelia, E. (2006). Influence of malting on the nutritional characteristics of Kunun-zaki. African Journal of Biotechnology, 5(10), 996–1000.

Terna, G. & Ayo, J. (2002). Innovations in the traditional Kunun-zaki production process. Pakistan Journal of Nutrition, 1(5), 202–205. doi:10.3923/pjn.2002.202.205

Uvere, P. O., & Amazikwu, U. C. (2011). Processing and evaluation of instant Kunun-zaki from millet-cowpea and millet-soybean malt. African Journal of Food Science, 5(14), 761-768. doi: 10.5897/AJFS11.069

Adebayo, G., Otunola, G., & Ajao, T. (2010). Physicochemical, microbiological and sensory characteristics of Kunu prepared from millet, maize and guinea corn and stored at selected temperatures. Advance Journal of Food Science and Technology, 2(1), 41–46.

Ikpoh, I., Lennox, J., Agbo, B., Henshaw, E., & Udoekong, N. (2013). Microbial quality assessment of Kunun beverage locally prepared and hawked in Calabar, Cross River State, Nigeria. Global Journal of Biodiversity Science and Management, 3(1), 58-61.

Elmahmood, A., & Doughari, J. (2007). Microbial quality assessment of Kunun-zaki beverage sold in Girei town of Adamawa State, Nigeria. African Journal of Food Science, 1(1), 11-15.

Amusa N., & Odunbaku, O. (2009). Microbiological and nutritional quality of hawked Kunun (a sorghum based non-alcoholic beverage) widely consumed in Nigeria. Pakistan Journal of Nutrition, 8(1), 20-25. doi: 10.3923/pjn.2009.20.25

Makut, M. D., Nyam, M. A., Obiekezie, S. O., & Abubakar, A. E. (2013). Antibiogram of bacteria isolated from Kunun-zaki drink sold in Keffi Metropolis. American Journal of Infectious diseases, 9(3), 71-76. doi: 10.3844/ajidsp.2013.71.76

Osuntogun, B., & Aboaba, O. (2004). Microbiological and physico-chemical evaluation of some non-alcoholic beverages. Pakistan Journal of Nutrition, 3(3), 188–192.

Olasupo, N., osikoya, A., Kuboye, A., Olatunii, O., & Odunfa, S. (2000). An investigation on the preservation of Kunun-zaki, an African fermented cereal based food drink. Acta Alimentaria, 29(4), 385-392. doi: 10.1556/aalim.29.2000.4.9

Ofudje, E., Okon, U., Oduleye, O., & Williams O. (2016). Proximate, mineral contents and microbial analysis of Kunun-zaki (a non-alcoholic local beverage) in Ogun State, Nigeria. Journal of Advance in Biology and Biotechnology, 7(1), 1-8. doi: 10.9734/JABB/2016/26670

Nyanzi, R., & Jootse, P. (2012). Cereal based functional foods. In E. Rigobelo (Ed.), Probiotics (pp. 161-197). IntechOpen. doi: 10.5772/50120

Edward, K. C., Alozie, C. E., Owuamalam, P. O., & Onyekachi, O. V. (2019). Screening of Kunun-zaki for the presence of extended spectrum beta lactamase and carbapenemase producing Escherichia coli. SAR Journal, 2(4), 158–166. doi: 10.18421/SAR24-03

Yusha’u, M., Abubakar, H. M., & Kawo, A. H. (2010). Commercial foods as potential sources of extended spectrum β-lactamses (ESBL) producers in Kano, Nigeria. International Journal of Pharmaceutical Applied Sciences, 1(1), 59–62.

Todar, K. (2009). Todar’s Online Textbook of Bacteriology 2008. Retrieved from

Winn, W., Allen, S., Janda, W., Koneman, E., Procop, G., Schreckenberger, P., & Woods. G. (2006). Koneman’s Color Atlas and Textbook of Diagnostic Microbiology (6th ed.). Philadelphia: Lippincott Willams and Wilkins.

Hall, G. S. (2003). MRSA: Lab detection, epidemiology, and infection control. Microbiology Frontlines, 3, 1–6.

Arunkumar, V., Prabagaravarthanan, R., & Bhaskar, M. (2017). Prevalence of Methicillin-resistant Staphylococcus aureus (MRSA) infections among patients admitted in critical care units in a tertiary care hospital. International Journal of Research in Medical Sciences, 5(6), 2362–2366. doi: 10.18203/2320-6012.ijrms20172085

Otto, M. (2017). Next generation sequencing to monitor the spread of antimicrobial resistance. Genome Medicine, 9(1), 1–3. doi: 10.1186/s13073-017-0461-x

Rodriguez-Noriega, E., Seas, C., Guzman-Blanco, M., Mejia, C., Alvarez, C., Bavestrello, L., Zurita, J., Labarca, J., Luna, C. M., Salles, M. J., & Gotuzzo, E. (2010). Evolution of methicillin resistant Staphylococcus aureus clones in Latin America. International Journal of Infectious Diseases, 14(7), 560-566. doi: 10.1016/j.ijid.2009.08.018

Milheirico, C., Oliveira, D. C., & de Lencastre, H. (2007). Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 51(9), 3374-3377. doi: 10.1128/AAC.00275-07

Okwu, M. U., Mitsan, O., Oladeinde, B., Palmans, I., & Van Dijck, P. (2016). Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin resistant Staphylococci obtained from clinical samples in South-South, Nigeria. World Journal of Pharmacy and Pharmaceutical Sciences, 5(7), 91-103. doi: 10.20959/wjpps20167-7110

Dhanalakshmi, T., Umapathy, B., & Mohan, D. (2012). Prevalence of methicillin, vancomycin and multi drug resistance among Staphylococcus aureus. Journal of Clinical and Diagnostic Research, 6(6), 974-977.

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanism of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. doi: 10.1038/nrmicro3380

Bush, K. (2013). The ABCD’s of beta lactamase nomenclature. Journal of Infection and Chemotherapy, 19(4), 549-559. doi: 10.1007/s10156-013-0640-7

Deschamps, C., Clermont, O., Hipeaux, M. C., Arlet, G., Denamur, E., & Branger, C. (2009). Multiple acquisition of CTX-M plasmids in the rare D2 genotype of Escherichia coli provide evidence for convergent evolution. Microbiology, 155(5), 1656-1668. doi: 10.1099/mic.0.023234-0

Altayb, H. N., El Amin, N. M., Mukhtar, M. M., Salih, M. A., & Siddig, M. A. (2014). Molecular characterization and in silico analysis of a novel mutation in TEM-1 beta lactamase gene among pathogenic E. coli infecting a Sudanese patient. American Journal of Microbiological Research, 2(6), 217-223. doi: 10.12691/ajmr-2-6-8

Knothe, H., Shah, P., Krcmery, V., Antal, M., & Mitsuhashi, S. (1983). Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection, 11(6), 315-317. doi: 10.1007/BF01641355

Edward, K. C., Owuamalam, P. O., Onyekachi, O. V., Nnochiri, O. A., & Akumah, C. N. (2017). Microbial quality assessment of ice cream sold in Umuahia, South-Eastern, Nigeria: A comparative study. Journal of Biology, Agriculture and Healthcare, 7(16), 40-48.

Shu’aibu, I., Hadiza, J., Yusha’u, M., Kabiru, M., Lawal, G., Adamu, M. T., & Khairiyya, M. (2018). Assessment of foods and drinks for the presence of extended spectrum beta lactamase (ESBL) producing bacteria in Gombe Metropolis, Nigeria. Advanced Science Letters, 24(5), 3646-3651. doi: 10.1166/asl.2018.11457

Opeyemi, A. F., & Obuneme, O. S. (2020). Bacteriological and nutritional assessment of tiger nut milk (Kunun-aya) consumed by students of Nasarawa State University, Keffi, Nigeria. World Journal of Advanced Research and Reviews, 6(3), 059-068. doi: 10.30574/wjarr.2020.6.3.0097

Ntukidem, V. E., Edima-Nyah, A. P., Ndah, L. S., & Abraham, N. A. (2002). Assessment of Microbiological Safety and Organoleptic properties of tiger nut (Cyperus esculentus) beverage processed locally and sold in Uyo Metropolis of Akwa Ibom State, Nigeria. International Journal of Food Nutrition and Safety, 11(1), 37-50.

Cheesbrough, M. (2006). District laboratory practice in tropical countries (2nd ed.). Cambridge: Cambridge University Press.

Clinical and laboratory standard institute. (2020). Performance standards for antimicrobial susceptibility testing (M100). Reteieved from

Clinical and laboratory standard institute. (2014). Performance standards for antimicrobial susceptibility testing (M100-S24). Retrieved from

Jarlier, V., Nicolas, M. H., Fournier, G., & Philippon, A. (1988). Extended broad-spectrum beta lactamases conferring transferable resistance to newer beta lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Reviews of Infectious Diseases, 10(4), 867-878. doi: 10.1093/clinids/10.4.867

Bradford, P. A. (2001). Extended spectrum beta lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews, 14(4), 933-951. doi: 10.1128/cmr.14.4.933-951.2001

Chaudhary, U., & Aggarwal, R. (2004). Extended spectrum beta lactamases (ESBL)- an emerging threat to clinical therapeutics. Indian Journal of Medical Microbiology, 22(2), 75-80.

Gyar, S., Bala, H., & Reuben, C. (2014). Bacteriological quality assessment of Nigerian Non-alcoholic beverage (Kunun-zaki) sold in Keffi Metropolis, Nigeria. Greener Journal of Microbiology and Antimicrobials, 2(2), 21-25. doi: 10.15580/GJMA.2014.2.0513014231

Braide, W., Adeleye, S., Ukagwu, N., & Lugbe, P. (2018). Chemical properties and microbiological profile of Kunun zaki, a non-alcoholic beverage. Biomedical Journal of Scientific and Technical Research, 4(1), 3731-3735. doi: 10.26717/BJSTR.2018.04.001001

Aboh, M., & Oladosu, P. (2014). Microbiological assessment of Kunun-zaki marketed in Abuja Municipal Area Council (AMAC) in the Federal Capital Territory (FCT), Nigeria. African Journal of Microbiology Research, 8(15), 1633-1637. doi: 10.5897/AJMR2013.5779

Center for food safety. (2014). Microbiological guidelines for food. Retrieved from

European Food Safety Authority & European Center for disease prevention and control (ECDC) (2015). The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2014. EFSA Journal, 13(12), 4329. doi: 10.2903/j.efsa.2015.4329

Essien, E., Monago, C., & Edor, E. (2011). Evaluation of the nutritional and microbiological quality of Kunun (a cereal based non-alcoholic beverage) in Rivers State, Nigeria. Internet Journal of Nutrition and Wellness, 10(2).

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G. Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug resistant and pandrug resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. doi: 10.1111/j.1469-0691.2011.03570.x

Angulo, F., Nargund, V. N., & Chiller, T. M. (2004). Evidence of an association between use of antimicrobial agents in food animals and antimicrobial resistance among bacteria isolated from humans and the human health consequences of such resistance. Journal of Veterinary Medicine Series, 51(8-9), 374-379. doi: 10.1111/j.1439-0450.2004.00789.x

Edward, K. C., Onyekachi, O. V., Owuamalam, P. O., Nnochiri, O. A., & Alozie, C. E. (2018). Prevalence and antibiogram of coagulase positive Staphylococci isolated from farm animals in Michael Okpara University of Agriculture, Umudike, South-Eastern Nigeria. IOSR Journal of Pharmacy, 8(12), 20–26.

Gardete, S., & Tomasz, A. (2014). Mechanism of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Investigation, 124(7), 2836-2840. doi: 10.1172/JCI68834

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2020 Edward Kelechi, Daniel Emeaso, Alozie Chukwuemeka, Owuamalam Precious, Onyekachi Onyedikachi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.