Pyrolytic Extraction and Characterization of Oil from Waste Recharge Scratch Card Papers for Industrial Application

Alexander Asanja Jock, Okoli Christian Sunday, Hamidu Lucas Albert Jerome, Daben Moses Janet, Peters Grace Funmilayo

Abstract

Oil extracted from mobile phone waste recharge scratch cards paper by thermal pyrolysis was investigated. The oil was characterized by its physical, chemical, and functional groups present. The physicochemical characteristics of the oil determined are density 900 kg/m3, viscosity 1.5 mm2s-1, acid value 1.122 mgKOH/g, saponification value 98.175 mgKOH/g and iodine value 22.84 gI2 /100g. The pour point and flashpoints are -15 °C and 90 °C respectively. The Fourier Transform Infrared (FTIR) and Gas Chromatography-Mass Spectroscopy (GC-MS) revealed the presence of aldehydes, ketones, carboxylic acids, esters, alkenes alkanes, ethers, and phenol. This indicates that the oil has industrial applications in chemical, pharmaceutical, and biodiesel production.



Keywords


bio-oil; biomass; pyrolysis; physiochemical

Full Text:

PDF


References


Adegbe, A. A., Larayetan, R. A., Omojuwa, T. J. (2016). Proximate Analysis, Physicochemical Properties and Chemical Constituents Characterization of Moringa Oleifera (Moringaceae) Seed Oil Using GC-MS Analysis. American Journal of Chemistry, 6(2), 23–28.

Adekunle, A. S., Oyekunle, J. A. O., Baruwa, S. O., Ogunfowokan, A. O., & Ebenso, E. E. (2014). Speciation study of the heavy metals in commercially available recharge cards coatings in Nigeria and the health implication. Toxicology Reports, 1, 243–251. doi: 10.1016/j.toxrep.2014.05.008

Asanja Alexander, J. (2017). Physicochemical and Phytochemical Characterization of Seed Kernel oil From Desert Date (Balanites Aegyptica). Journal of Chemical Engineering And Bioanalytical Chemistry, 2(1). doi: 10.25177/jcebc.2.1.1

Asuquo, J. E. (2008). Studies on the Adsorption of Some Selected Metallic Soaps onto Hematite (Doctoral dissertation), University of Port Harcourt. Nigeria.

Biswal, B., Kumar, S., & Singh, R. K. (2013). Production of Hydrocarbon Liquid by Thermal Pyrolysis of Paper Cup Waste. Journal of Waste Management, 1–7. doi: 10.1155/2013/731858

Folaranmi, J. (2013). Production of Biodiesel (B100) from Jatropha Oil Using Sodium Hydroxide as Catalyst. Journal of Petroleum Engineering, 2013, 1–6. doi: 10.1155/2013/956479

Guo, X., Wang, S., Guo, Z., Liu, Q., Luo, Z., & Cen, K. (2010). Pyrolysis characteristics of bio-oil fractions separated by molecular distillation. Applied Energy, 87(9), 2892–2898. doi: 10.1016/j.apenergy.2009.10.004

Haftu, G. A. (2015). Physico-chemical Characterization and Extraction of Oil from Balanites Aegyptiaca Plant (seed). World Journal of Pharmaceutical Research, 4(11), 1723–1732.

Hani, F. F. B., & Hailat, M. M. (2016). Production of Bio-Oil from Pyrolysis of Olive Biomass with/without Catalyst. Advances in Chemical Engineering and Science, 06(04), 488–499. doi: 10.4236/aces.2016.64043

Ideriah, K. J. T. (2015). Heavy Metals Concentrations in Mobile Phone Recharge Cards in Port Harcourt Nigeria. International Journal of Current Research and Academic Review, 3(9), 214–220.

Jiang, X., Naoko, E., & Zhong, Z. (2011). Structure properties of pyrolytic lignin extracted from aged bio-oil. Chinese Science Bulletin, 56(14), 1417–1421. doi: 10.1007/s11434-011-4465-4

Jock, A. A., Daben, J. M., Yilji, N., Sori, R. M., Ambayin, N. M., Ryemshak, A. S., Mbaya, I. E., & Putshaka, D. J. (2017). Extraction and Production of Biodiesel from Jatropha Curcas Seed Oil. International Journal of Scientific & Engineering Research, 8(6), 2046–2049.

Lyu, G., Wu, S., & Zhang, H. (2015). Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions. Frontiers in Energy Research, 3. doi: 10.3389/fenrg.2015.00028

Macedo, T., Pereira, G. R., Pardal, M. J., Soares, S. A., & Lameira, J. V. (2013). Viscosity of Vegetable Oils and Biodiesel and Energy Generation. International Journal of Chemical and Molecular Engineering, 7(5), 251–256.

Margallo, M., Taddei, M. B. M., Hernández-Pellón, A., Aldaco, R., & Irabien, Á. (2015). Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation. Clean Technologies and Environmental Policy, 17(5), 1333–1353. doi: 10.1007/s10098-015-0961-6

Purakayastha, T. J., Kumari, S., & Pathak, H. (2015). Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma, 239-240, 293–303. doi: 10.1016/j.geoderma.2014.11.009

Roy, M. M., Dutta, A., Corscadden, K., Havard, P., & Dickie, L. (2011). Review of biosolids management options and co-incineration of a biosolid-derived fuel. Waste Management, 31(11), 2228–2235. doi: 10.1016/j.wasman.2011.06.008

Sani, N. J., Aminu, B. M., & Mukhtar, M. D. (2018). Eco-friendly synthesis of silver nanoparticles using Lactobacillus delbrueckii subsp. bulgaricus isolated from kindrimo (locally fermented milk) in Kano State, Nigeria. Bayero Journal of Pure and Applied Sciences, 10(1), 481. doi: 10.4314/bajopas.v10i1.92s

Serrano-Ruiz, J. C., & Dumesic, J. A. (2011). Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ. Sci., 4(1), 83–99. doi: 10.1039/c0ee00436g

Shah., Z., Veses, R. C., & da Silva, R. (2016). Using GC-MS to Analyze Bio-Oil Produced from Pyrolysis of Agricultural Wastes - Discarded Soybean Frying Oil, Coffee and Eucalyptus Sawdust in the Presence of 5% Hydrogen and Argon. Journal of Analytical and Bioanalytical Techniques, 7(2), 1–7. doi: 10.4172/2155-9872.1000300

Sukumaran, R. K., Surender, V. J., Sindhu, R., Binod, P., Janu, K. U., Sajna, K. V., … Pandey, A. (2010). Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresource Technology, 101(13), 4826–4833. doi: 10.1016/j.biortech.2009.11.049

Wang, Q., Song, H., Pan, S., Dong, N., Wang, X., & Sun, S. (2020). Initial pyrolysis mechanism and product formation of cellulose: An Experimental and Density functional theory (DFT) study. Scientific Reports, 10(1). doi: 10.1038/s41598-020-60095-2

Xu, Y., Hu, X., Li, W., & Shi, Y. (2011). Preparation and Characterization of Bio-oil from Biomass. Progress in Biomass and Bioenergy Production. doi: 10.5772/16466

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781–1788. doi: 10.1016/j.fuel.2006.12.013

Zaman, C. Z., Pal, K., Yehye, W. A., Sagadevan, S., Shah, S. T., Adebisi, G. A., … Johan, R. B. (2017). Pyrolysis: A Sustainable Way to Generate Energy from Waste. Pyrolysis. doi: 10.5772/intechopen.69036


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jock Asanja Alexander, Okoli Christian Sunday, Hamidu Lucas Albert Jerome, Daben Moses Janet, Peters Grace Funmilayo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.