A brief overview of current drug repurposing approaches for COVID-19 management
Abstract
This brief overview is intended to shed light on the current drug repositioning (also called drug repurposing) in the therapeutics of the novel coronavirus disease which emerged in 2019 (COVID-19). In this sense, the repositioning drugs for new indications can offer a better risk-versus-reward trade-off when compared to other drug development strategies, given that it makes use of drugs whose safety profile are already understood. Nonetheless, this approach allows healthcare professionals to promptly tackle the disease by investigating readily available drugs against it.
Keywords
Full Text:
PDFReferences
World Health Organization. (2020, January 5). Pneumonia of unknown cause – China. Retrieved from https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/
Fintelman-Rodrigues, N., Sacramento, C. Q., Lima, C. R., da Silva, F. S., Ferreira, A. C., Mattos, M., … Souza, T. M. L. (2020). Atazanavir inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production. doi: 10.1101/2020.04.04.020925
Arya, R., Das, A., Prashar, V., & Kumar, M. (2020). Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs. doi: 10.26434/chemrxiv.11860011.v2
Liu, Q., Zhou, Y., & Yang, Z. (2015). The cytokine storm of severe influenza and development of immunomodulatory therapy. Cellular & Molecular Immunology, 13(1), 3–10. doi: 10.1038/cmi.2015.74
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. doi: 10.1016/s0140-6736(20)30183-5
Morgenstern, B., Michaelis, M., Baer, P. C., Doerr, H. W., & Cinatl, J. (2005). Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochemical and Biophysical Research Communications, 326(4), 905–908. doi: 10.1016/j.bbrc.2004.11.128
Rider, T. H., Zook, C. E., Boettcher, T. L., Wick, S. T., Pancoast, J. S., & Zusman, B. D. (2011). Broad-Spectrum Antiviral Therapeutics. PLoS ONE, 6(7), e22572. doi: 10.1371/journal.pone.0022572
Vinicius, L. (2020, April 8). HIV antiretroviral drug studied to fight COVID-19. The medicine may inhibit the replication of the virus. Retrieved from https://agenciabrasil.ebc.com.br/en/saude/noticia/2020-04/hiv-antiretroviral-drug-studied-fight-covid-19
Leneva, I. A., Russell, R. J., Boriskin, Y. S., & Hay, A. J. (2009). Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Research, 81(2), 132–140. doi: 10.1016/j.antiviral.2008.10.009
Singh, A. K., Singh, A., Shaikh, A., Singh, R., & Misra, A. (2020). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 241–246. doi: 10.1016/j.dsx.2020.03.011
Su, B., Wang, Y., Zhou, R., Jiang, T., Zhang, H., Li, Z., … Sun, L. (2019). Efficacy and Tolerability of Lopinavir/Ritonavir- and Efavirenz-Based Initial Antiretroviral Therapy in HIV-1-Infected Patients in a Tertiary Care Hospital in Beijing, China. Frontiers in Pharmacology, 10. doi: 10.3389/fphar.2019.01472
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., … Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. doi: 10.1038/s41422-020-0282-0
Sd.News. (2020, February 5). Abidol and darunavir can effectively inhibit coronavirus. Retrieved from http://www.sd.chinanews.com/2/2020/0205/70145.html (in Chinese).
Chen, C., Zhang, Y., Huang, J., Yin, P., Cheng, Z., Wu, J., … Wang, X. (2020). Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. doi: 10.1101/2020.03.17.20037432
Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787. doi: 10.1016/j.antiviral.2020.104787
Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., Sheahan, T. P., Lu, X., … Denison, M. R. (2018). Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio, 9(2). doi: 10.1128/mbio.00221-18
Shen, L., Niu, J., Wang, C., Huang, B., Wang, W., Zhu, N., … Tan, W. (2019). High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses. Journal of Virology, 93(12). doi: 10.1128/jvi.00023-19
Jean, S.-S., Lee, P.-I., & Hsueh, P.-R. (2020). Treatment options for COVID-19: The reality and challenges. Journal of Microbiology, Immunology and Infection. doi: 10.1016/j.jmii.2020.03.034
Furuta, Y., Komeno, T., & Nakamura, T. (2017). Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy, Series B, 93(7), 449–463. doi: 10.2183/pjab.93.027
Jean, S.-S., Lee, P.-I., & Hsueh, P.-R. (2020). Treatment options for COVID-19: The reality and challenges. Journal of Microbiology, Immunology and Infection. doi: 10.1016/j.jmii.2020.03.034
Zumla, A., Chan, J. F. W., Azhar, E. I., Hui, D. S. C., & Yuen, K.-Y. (2016). Coronaviruses — drug discovery and therapeutic options. Nature Reviews Drug Discovery, 15(5), 327–347. doi: 10.1038/nrd.2015.37
Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., … Baric, R. S. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 11(1). doi: 10.1038/s41467-019-13940-6
Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., … Wei, M. (2020). A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 382(19), 1787–1799. doi: 10.1056/nejmoa2001282
Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., & Einav, S. (2020). A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Critical Care. doi: 10.1016/j.jcrc.2020.03.005
Wagstaff, K. M., Rawlinson, S. M., Hearps, A. C., & Jans, D. A. (2011). An AlphaScreen®-Based Assay for High-Throughput Screening for Specific Inhibitors of Nuclear Import. Journal of Biomolecular Screening, 16(2), 192–200. doi: 10.1177/1087057110390360
Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D., & Jans, D. A. (2012). Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, 443(3), 851–856. doi: 10.1042/bj20120150
Rosas, R. (2020, April 6). Coronavírus: Testes da Fiocruz indicam que atazanavir foi capaz de inibir replicação de vírus. Retrieved from https://valorinveste.globo.com/mercados/brasil-e-politica/noticia/2020/04/06/coronavirus-testes-da-fiocruz-indicam-que-atazanavir-foi-capaz-de-inibir-replicacao-de-virus.ghtml
Romanelli, M. M., Costa-Silva, T. A. da, Cunha-Junior, E., Dias Ferreira, D., Guerra, J. M., Galisteo, A. J., … Tempone, A. G. (2019). Sertraline Delivered in Phosphatidylserine Liposomes Is Effective in an Experimental Model of Visceral Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 9. doi: 10.3389/fcimb.2019.00353
Sciani, J. M., & de Lima, L. P. (2020, April 7). Reposicionamento de fármacos. O caso da cloroquina e o COVID-19. Retrieved from https://www.inovamol.com.br/post/reposicionamento-de-fármacos
Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery, 3(8), 673–683. doi: 10.1038/nrd1468Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Douglas Vieira Thomaz, Pedro da Fonseca Soares Rodrigues

This work is licensed under a Creative Commons Attribution 4.0 International License.