Influence of Different Spherical Binary Plasmonic NPs on HTM Layer in Methyl Ammonium Lead Triiodide Solar Cell

Cliff Orori Mosiori, Walter Kamande Njoroge, Lawrence Otieno Ochoo

Abstract

Methylammonium lead triiodide perovskite solar cells have attracted huge research interest. Its optoelectronic properties are competing with those of silicon wafers. It is a hybrid absorber with a direct band gap of about 1.53 eV with good light-absorption capability appropriate for optoelectronic applications. A typical perovskite solar cell HTML layer rarely incorporates ZnO or Cu2O or TiO2 nanoparticles to increase charge carrier transport. These ZnO, Cu2O, TiO2 nanoparticles can be introduced into the HTM layer to modify its PSCs efficiency and performance. These nanoparticles are direct band gap binary semiconductors with a wide band gap energy range of 2.17 eV to 3.37 eV respectively which can lead to higher transport mobility and enhanced HTM nanostructured layer. In this paper, two model solar cell having a ITO/TiO2/CH3NH3PbI3/P3HT/Ag and ITO/TiO2/Ag:CH3NH3PbI3/P3HT/Ag structures were proposed, geometrically modelled  and simulated using SCAPS-1D software. Their HTM layer (composed of P3HT) was doped with ZnO, Cu2O, and TiO2 nanoparticles respectively to determine their influence on PCEs of this solar cells. It was revealed that starting from undoped P3HT layer all through the Cu2O, ZnO to TIO2 doped layers, efficiency reduced from 13.123 % and 9.071% respectively; fill factor (FF) also reduced from 69.4% to 48.9 % for the doped CH3NH3PbI3 perovskite solar cell while efficiency of doped CH3NH3PbI3 perovskite solar cell reduced from 13.033 % and 9.091%, the fill factor (FF) also reduced from 66.4% to 52.9 % respectively. It was noted that the solar cell employing P3HT undoped layer had the best performance and concluded that introducing nanoparticles onto P3HT layer has a negative impact on the performance of CH3NH3PbI3 perovskite solar cell.




Keywords


Plasmonic Oscillations; hybrid perovskite; SCAPS-1D software; photon absorption; Computer Simulation Technology

Full Text:

PDF


References


Atwater, H., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9, 205–213.

Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824–830. doi: 10.1038/nature01937

Beck, F. J., Polman, A., & Catchpole, K. R. (2009). Tunable light trapping for solar cells using localized surface plasmons. Journal of Applied Physics, 105(11), 114310. doi: 10.1063/1.3140609

Cao, J., Sun, T., & Grattan, K. T. V. (2014). Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators B: Chemical, 195, 332–351. doi: 10.1016/j.snb.2014.01.056

Catchpole, K. R., & Polman, A. (2008). Plasmonic solar cells. Optics Express, 16(26), 21793. doi: 10.1364/oe.16.021793

Derkacs, D., Lim, S. H., Matheu, P., Mar, W., & Yu, E. T. (2006). Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 89(9), 093103. doi: 10.1063/1.2336629

Duche, D., Torchio, P., Escoubas, L., Monestier, F., Simon, J.-J., Flory, F., & Mathian, G. (2009). Improving light absorption in organic solar cells by plasmonic contribution. Solar Energy Materials and Solar Cells, 93(8), 1377–1382. doi: 10.1016/j.solmat.2009.02.028

Ghosh, B., Espinoza, G. (2017). Plasmonics for Improved Photovoltaic Devices. Juniper Online Material Science, 1(2): 555–558. doi: 10.19080/JOJMS.2017.01.555558

Hu, M., Chen, J., Li, Z.-Y., Au, L., Hartland, G. V., Li, X., … Xia, Y. (2006). Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 35(11), 1084. doi: 10.1039/b517615h

Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 107(3), 668–677. doi: 10.1021/jp026731y

Kumar, S., Wittenberg, N. J., & Oh, S.-H. (2012). Nanopore-Induced Spontaneous Concentration for Optofluidic Sensing and Particle Assembly. Analytical Chemistry, 85(2), 971–977. doi: 10.1021/ac302690w

Lamprecht, B., Schider, G., Lechner, R. T., Ditlbacher, H., Krenn, J. R., Leitner, A., & Aussenegg, F. R. (2000). Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance. Physical Review Letters, 84(20), 4721–4724. doi: 10.1103/physrevlett.84.4721

Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., Koel, B. E., & Atwater, H. A. (2003). Plasmonics—A Route to Nanoscale Optical Devices (Advanced Materials, 2001, 13, 1501). Advanced Materials, 15(78), 562–562. doi: 10.1002/adma.200390134

Mansoor, R., & AL-Khursan, A. H. (2018). Numerical modelling of surface plasmonic polaritons. Results in Physics, 9, 1297–1300. doi: 10.1016/j.rinp.2018.04.052

Moreno, F., García-Cámara, B., Saiz, J. M., & González, F. (2008). Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles. Optics Express, 16(17), 12487. doi: 10.1364/oe.16.012487

Mosiori, C. O., Oeba, D. A., & Shikambe, R. (2017). Determination of Planck’s Constant using Light Emitting Diodes. Path of Science, 3(10), 2007–2012. doi: 10.22178/pos.27-2

Murray, W. A., & Barnes, W. L. (2007). Plasmonic Materials. Advanced Materials, 19(22), 3771–3782. doi: 10.1002/adma.200700678

Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., & Johnson, S. G. (2010). Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 181(3), 687–702. doi: 10.1016/j.cpc.2009.11.008

Pattnaik, P. (2005). Surface plasmon resonance. Applied biochemistry and biotechnology, 126(2), 79–92.

Petryayeva, E., & Krull, U. J. (2011). Localized surface plasmon resonance: Nanostructures, bioassays and biosensing – A review. Analytica Chimica Acta, 706(1), 8–24. doi: 10.1016/j.aca.2011.08.020

Pillai, S., & Green, M. A. (2010). Plasmonics for photovoltaic applications. Solar Energy Materials and Solar Cells, 94(9), 1481–1486. doi: 10.1016/j.solmat.2010.02.046

Pillai, S., Catchpole, K. R., Trupke, T., & Green, M. A. (2007). Surface plasmon enhanced silicon solar cells. Journal of Applied Physics, 101(9), 093105. doi: 10.1063/1.2734885

Pirozhenko, I., & Lambrecht, A. (2008). Influence of slab thickness on the Casimir force. Physical Review A, 77(1). doi: 10.1103/physreva.77.013811

Rechberger, W., Hohenau, A., Leitner, A., Krenn, J. R., Lamprecht, B., & Aussenegg, F. R. (2003). Optical properties of two interacting gold nanoparticles. Optics Communications, 220(1-3), 137–141. doi: 10.1016/s0030-4018(03)01357-9

Rockstuhl, C., Fahr, S., & Lederer, F. (2008). Absorption enhancement in solar cells by localized plasmon polaritons. Journal of Applied Physics, 104(12), 123102. doi: 10.1063/1.3037239

Schaadt, D. M., Feng, B., & Yu, E. T. (2005). Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters, 86(6), 063106. doi: 10.1063/1.1855423

Spinelli, P., van Lare, C., Verhagen, E., & Polman, A. (2011). Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate. Optics Express, 19(S3), A303. doi: 10.1364/oe.19.00a303

Stuart, H. R., & Hall, D. G. (1998). Island size effects in nanoparticle-enhanced photodetectors. Applied Physics Letters, 73(26), 3815–3817. doi: 10.1063/1.122903

Tokman, M. D., Westerhof, E., & Gavrilova, M. A. (2000). Wave power flux and ray-tracing in regions of resonant absorption. Plasma Physics and Controlled Fusion, 42(2), 91–98. doi: 10.1088/0741-3335/42/2/302

Ungureanu, C., Rayavarapu, R. G., Manohar, S., & van Leeuwen, T. G. (2009). Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment. Journal of Applied Physics, 105(10), 102032. doi: 10.1063/1.3116139

Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267–297. doi: 10.1146/annurev.physchem.58.032806.104607

Xu, G., Tazawa, M., Jin, P., Nakao, S., & Yoshimura, K. (2003). Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Applied Physics Letters, 82(22), 3811–3813. doi: 10.1063/1.1578518

Yee, K. S. (1966). Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on Antennas Propagation, 14(3), 302–307.

Zayats, A. V., & Smolyaninov, I. I. (2003). Near-field photonics: surface plasmon polaritons and localized surface plasmons. Journal of Optics A: Pure and Applied Optics, 5(4), S16–S50. doi: 10.1088/1464-4258/5/4/353

Zhao, D., Ma, Z., & Zhou, W. (2010). Plasmonic field and efficiency enhancement in crystalline thin film photovoltaics. Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion. doi: 10.1117/12.861887


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Cliff Orori Mosiori, Walter Kamande Njoroge, Lawrence Otieno Ochoo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.