Predictive Modelling to Study the Electrochemical Behaviour of PdO, TiO2 and Perovskite-Type LaFeO3 Modified Carbon Paste Electrodes
Abstract
Keywords
Full Text:
PDFReferences
Ratajczak, P., Suss, M. E., Kaasik, F., & Béguin, F. (2019). Carbon electrodes for capacitive technologies. Energy Storage Materials, 16, 126–145. doi: 10.1016/j.ensm.2018.04.031
Simonet, J. (2018). Electrochemical carboxylation of titanium to generate versatile new interfaces. Electrochemistry Communications, 88, 67–70. doi: 10.1016/j.elecom.2018.01.007
Antunes, R., Ferraz, D., Garcia, L., Thomaz, D., Luque, R., Lobón, G., … Lopes, F. (2018). Development of a Polyphenol Oxidase Biosensor from Jenipapo Fruit Extract (Genipa americana L.) and Determination of Phenolic Compounds in Textile Industrial Effluents. Biosensors, 8(2), 47. doi: 10.3390/bios8020047
De Macedo, I. Y. L., Garcia, L. F., de Souza, A. R., da Silva, A. M. L., Fernandez, C., Santos, M. D. G., … Gil, E. de S. (2016). Differential Pulse Voltammetric Determination of Albendazole and Mebendazole in Pharmaceutical Formulations Based on Modified Sonogel Carbon Paste Electrodes with Perovskite-Type LaFeO3Nanoparticles. Journal of The Electrochemical Society, 163(8), B428–B434. doi: 10.1149/2.0661608jes
Sanz, G., Ferreira Garcia, L., Yepez, A., Colletes de Carvalho, T., Gontijo Vaz, B., Romão, W., … Luque, R. (2018). TiO2@C Nanostructured Electrodes for the Anodic Removal of Cocaine. Electroanalysis, 30(9), 2094–2098. doi: 10.1002/elan.201800297
De Oliveira Neto, J. R., Rezende, S. G., Lobón, G. S., Garcia, T. A., Macedo, I. Y. L., Garcia, L. F., … de Souza Gil, E. (2017). Electroanalysis and laccase-based biosensor on the determination of phenolic content and antioxidant power of honey samples. Food Chemistry, 237, 1118–1123. doi: 10.1016/j.foodchem.2017.06.010
Sánchez-Calvo, A., Núñez-Bajo, E., Fernández-Abedul, M. T., Blanco-López, M. C., & Costa García, A. (2018). Optimization and characterization of nanostructured paper-based electrodes. Electrochimica Acta, 265, 717–725. doi: 10.1016/j.electacta.2018.01.179
Carneiro, M. C. C. G., Moreira, F. T. C., Dutra, R. A. F., Fernandes, R., & Sales, M. G. F. (2018). Homemade 3-carbon electrode system for electrochemical sensing: Application to microRNA detection. Microchemical Journal, 138, 35–44. doi: 10.1016/j.microc.2017.12.026
De Oliveira, F. M., de J. Guedes, T., Lima, A. B., Da Silva, L. M., & dos Santos, W. T. P. (2017). Alternative method to obtain the Tafel plot for simple electrode reactions using batch injection analysis coupled with multiple-pulse amperometric detection. Electrochimica Acta, 242, 180–186. doi: 10.1016/j.electacta.2017.05.018
Banerjee, S., Debata, S., Madhuri, R., & Sharma, P. K. (2018). Electrocatalytic behavior of transition metal (Ni, Fe, Cr) doped metal oxide nanocomposites for oxygen evolution reaction. Applied Surface Science, 449, 660–668. doi: 10.1016/j.apsusc.2017.12.014
Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3), 273–282. doi: 10.1111/j.1467-9868.2011.00771.x
R Foundation for Statistical Computing. (2018). R: A language and environment for statistical computing. Retrieved from http://softlibre.unizar.es/manuales/aplicaciones/r/fullrefman.pdf
Akbari, A., Amini, M., Tarassoli, A., Eftekhari-Sis, B., Ghasemian, N., & Jabbari, E. (2018). Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures & Nano-Objects, 14, 19–48. doi: 10.1016/j.nanoso.2018.01.006
Hrdlička, V., Navrátil, T., Barek, J., & Ludvík, J. (2018). Electrochemical behavior of polycrystalline gold electrode modified by thiolated calix[4]arene and undecanethiol. Journal of Electroanalytical Chemistry, 821, 60–66. doi: 10.1016/j.jelechem.2018.01.055
Mooste, M., Kibena-Põldsepp, E., Marandi, M., Matisen, L., Sammelselg, V., Podvorica, F. I., & Tammeveski, K. (2018). Surface and electrochemical characterization of aryl films grafted on polycrystalline copper from the diazonium compounds using the rotating disk electrode method. Journal of Electroanalytical Chemistry, 817, 89–100. doi: 10.1016/j.jelechem.2018.03.070
Konopka, S. J., & McDuffie, B. (1970). Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Analytical Chemistry, 42(14), 1741–1746. doi: 10.1021/ac50160a042
Sun, S., Li, H., & Xu, Z. J. (2018). Impact of Surface Area in Evaluation of Catalyst Activity. Joule, 2(6), 1024–1027. doi: 10.1016/j.joule.2018.05.003
Ye, Z., & Noréus, D. (2016). Metal hydride electrodes: The importance of surface area. Journal of Alloys and Compounds, 664, 59–64. doi: 10.1016/j.jallcom.2015.12.170
Oliveira, L. S., Alba, J. F. G., Silva, V. L., Ribeiro, R. T., Falcão, E. H. L., & Navarro, M. (2018). The effect of surface functional groups on the performance of graphite powders used as electrodes. Journal of Electroanalytical Chemistry, 818, 106–113. doi: 10.1016/j.jelechem.2018.04.022
Zhang, Q., Liu, X., Yin, L., Chen, P., Wang, Y., & Yan, T. (2018). Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes. Electrochimica Acta, 270, 352–362. doi: 10.1016/j.electacta.2018.03.059
Uddin, M. S., Tanaya Das, H., Maiyalagan, T., & Elumalai, P. (2018). Influence of designed electrode surfaces on double layer capacitance in aqueous electrolyte: Insights from standard models. Applied Surface Science, 449, 445–453. doi: 10.1016/j.apsusc.2017.12.088
Petovar, B., Xhanari, K., & Finšgar, M. (2018). A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis. Analytica Chimica Acta, 1004, 10–21. doi: 10.1016/j.aca.2017.12.020
Ratajczak, P., Suss, M. E., Kaasik, F., & Béguin, F. (2019). Carbon electrodes for capacitive technologies. Energy Storage Materials, 16, 126–145. doi: 10.1016/j.ensm.2018.04.031
Pifferi, V., Rimoldi, L., Meroni, D., Segrado, F., Soliveri, G., Ardizzone, S., & Falciola, L. (2017). Electrochemical characterization of insulating silica-modified electrodes: Transport properties and physicochemical features. Electrochemistry Communications, 81, 102–105. doi: 10.1016/j.elecom.2017.06.014
Maccarrone, F., & Paffuti, G. (2018). Capacitance and forces for thick circular electrodes. Journal of Electrostatics, 94, 30–37. doi: 10.1016/j.elstat.2018.05.003
Uddin, M. S., Tanaya Das, H., Maiyalagan, T., & Elumalai, P. (2018). Influence of designed electrode surfaces on double layer capacitance in aqueous electrolyte: Insights from standard models. Applied Surface Science, 449, 445–453. doi: 10.1016/j.apsusc.2017.12.088
Lockhart, R., Taylor, J., Tibshirani, R. J., & Tibshirani, R. (2014). Rejoinder: “A significance test for the lasso.” The Annals of Statistics, 42(2), 518–531. doi: 10.1214/14-aos1175rejArticle Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Douglas Vieira Thomaz, Adelmo Menezes de Aguiar Filho, Isaac Yves Lopes de Macêdo, Edson Silvio Batista Rodrigues, Eric Souza Gil

This work is licensed under a Creative Commons Attribution 4.0 International License.