Modeling a Bandwidth of a Two-Level Independent Quantum Laser System States

Cliff Orori Mosiori

Abstract

An electromagnetic radiation is basically considered to be a transverse wave propagating through an accessible media whether it is an optical fibre or a thin film depending on its propagating conditions. In analyzing its propagation, utilized specific cross-section areas have become an important base of understanding its extinction parameters. The term cross-section in this work applies only to boundary conditions within which particles interact within electromagnetic spectra through absorption or scattering. In such small volume contextual framework, nanotechnology reconsiders scattering cross-section coefficients. In this work, two different degenerate states were modeled and analyzed using a developed model of a laser cavity containing a media of length, L, with a gain of, k, per unit length which were mirrored to represent the upper and a lower level manifolds inhomogeneous broadening Stark levels respectively. The model developed created an impression that a laser medium is a coherent ensemble of particles or atoms whose bandwidth depends on how a laser is constructed.




Keywords


Einstein coefficient; spontaneous emission; spectral line profile function; small-signal gain coefficient; population inversion; laser cavity

Full Text:

PDF


References


1. Franco, R. L., Bellomo, B., Maniscalco, S., & Compagno, G. (2013). Dynamics of quantum correlations in two-qubit systems within non-markovian environments. International Journal of Modern Physics B, 27(01n03), 1345053.

[Google Scholar] [CrossRef]

2. He, Y., He, Y.-M., Wei, Y.-J., Jiang, X., Chen, M.-C., Xiong, F.-L., … Pan, J.-W. (2013). Indistinguishable Tunable Single Photons Emitted by Spin-Flip Raman Transitions in InGaAs Quantum Dots. Physical Review Letters, 111(23).

[Google Scholar] [CrossRef]

3. Hegerfeldt, G. C. (2013). Driving at the Quantum Speed Limit: Optimal Control of a Two-Level System. Physical Review Letters, 111(26).

[Google Scholar] [CrossRef]

4. Hinkley, N., Sherman, J. A., Phillips, N. B., Schioppo, M., Lemke, N. D., Beloy, K., … Ludlow, A. D. (2013). An Atomic Clock with 10-18 Instability. Science, 341(6151), 1215–1218.

[Google Scholar] [CrossRef]

5. Höning, M., Muth, D., Petrosyan, D., & Fleischhauer, M. (2013). Steady-state crystallization of Rydberg excitations in an optically driven lattice gas. Physical Review A, 87(2).

[Google Scholar] [CrossRef]

6. Kaminskii, A. A. (1990). Laser crystals: their physics and properties (2nd ed.). Berlin: Springer.

[Google Scholar]

7. Knight, P. L., & Radmore, P. M. (1982). Quantum revivals of a two-level system driven by chaotic radiation. Physics Letters A, 90(7), 342–346.

[Google Scholar] [CrossRef]

8. Koechner, W. (2006). Solid-state laser engineering. New York: Springer.

[Google Scholar]

9. Lu, X.-J., Chen, X., Ruschhaupt, A., Alonso, D., Guérin, S., & Muga, J. G. (2013). Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors. Physical Review A, 88(3), 033406.

[Google Scholar] [CrossRef]

10. Martin, M. J., Bishof, M., Swallows, M. D., Zhang, X., Benko, C., von-Stecher, J., … Ye, J. (2013). A Quantum Many-Body Spin System in an Optical Lattice Clock. Science, 341(6146), 632–636.

[Google Scholar] [CrossRef]

11. Meystre, P., & Sargent, M. (2010). Elements of quantum optics (4th ed.). Berlin: Springer.

[Google Scholar]

12. Mosiori, C. O. (2016). Effects of Quantum Confinements in Tin Sulphide Nanocrystals Produced by Wet-Solution Technique. Asia Pacific Journal of Energy and Environment, 3(2), 73–80.

[Google Scholar]

13. Mosiori, C. O., Kwembur, M., & Maera, J. (2016). Thermal Emittance and Solar Absorptance of CdS Thin Films. International Journal of Engineering Inventions, 4(11), 01-05.

[Google Scholar]

14. Mosiori, C. O., Maera, J., Njoroge, W., Shikambe, T., Munji, M., & Magare, R. (2015). Modeling Transfer of electrons between Energy States of an Electrolyte and CdS thin films using Gerischer Model. Engineering International, 3(1), 35–44.

[Google Scholar]

15. Ostermann, L., Ritsch, H., & Genes, C. (2013). Protected State Enhanced Quantum Metrology with Interacting Two-Level Ensembles. Physical Review Letters, 111(12), 123601.

[Google Scholar] [CrossRef]

16. Panock, R., & Temkin, R. (1977). Interaction of two laser fields with a three-level molecular system. IEEE Journal of Quantum Electronics, 13(6), 425–434.

[Google Scholar] [CrossRef]

17. Patel, R. B., Bennett, A. J., Farrer, I., Nicoll, C. A., Ritchie, D. A., & Shields, A. J. (2010). Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photonics, 4(9), 632–635.

[Google Scholar] [CrossRef]

18. Polley, E. H., Apple, D. J., & Bizzell, J. W. (1975). The laser as a research tool in visual system investigation. American Psychologist, 30(3), 340–348.

[Google Scholar] [CrossRef]

19. Ruschhaupt, A., Chen, X., Alonso, D., & Muga, J. G. (2012). Optimally robust shortcuts to population inversion in two-level quantum systems. New Journal of Physics, 14(9), 093040.

[Google Scholar] [CrossRef]

20. Yeo, I., de Assis, P.-L., Gloppe, A., Dupont-Ferrier, E., Verlot, P., Malik, N. S., … Richard, M. (2013). Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nature Nanotechnology, 9(2), 106–110.

[Google Scholar] [CrossRef]


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Cliff Orori Mosiori

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.