Optical Analysis of Ag-NPs Containing Methyl Ammonium Lead Tri-Iodide Thin Films

Cliff Orori Mosiori, Walter Kamande Njoroge, Lawrence Otieno Ochoo

Abstract

Methyl ammonium lead tri-iodide hybrid thin films were grown using solution technique. They were doped with silver nano-particles at different concentrations at concentrations of 0.05, 0.06, 0.07, 0.08, and 0.09 mM. Their reflectance and transmittance were recorded in the wavelength range 300–900 using UV-Vis double - beam spectrophotometer. Using these measurements, other optical parameters were simulated using scout software. The effect of silver nanoparticles was investigated. Results revealed that the thin films had highest transmittance of about 79 % as their band gap varied from 1.921–1.832 eV. Electrical conductivity varied from 1.4–1.6×105 S cm–1 while optical conductivity varied in the range of 0.3–0.6×1010 sec-1. They had a significantly low refractive index, suitable for optical applications within the range of 1.6–1.8. The extinction coefficient varied in the range as 1.0–1.7×10-5 while the absorption coefficient varied varies in the range of 2.1-4.2 cm- 1. It was concluded that the thin films were suitable for photonic device applications




Keywords


optical parameters; silver nano-particles; methyl ammonium lead tri-iodide; CH3NH3PbI3; energy band gap

Full Text:

PDF


References


1. Abate, A., Saliba, M., Hollman, D. J., Stranks, S. D., Wojciechowski, K., Avolio, R., … Snaith, H. J. (2014). Supramolecular Halogen Bond Passivation of Organic–Inorganic Halide Perovskite Solar Cells. Nano Letters, 14(6), 3247–3254.

[Google Scholar] [CrossRef]

2. Agarwal, S., & Nair, P. R. (2014). Performance optimization for Perovskite based solar cells. In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[Google Scholar] [CrossRef]

3. Agarwal, S., & Nair, P. R. (2015). Device engineering of perovskite solar cells to achieve near ideal efficiency. Applied Physics Letters, 107(12), 123901.

[Google Scholar] [CrossRef]

4. Ball, J. M., Lee, M. M., Hey, A., & Snaith, H. J. (2013). Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science, 6(6), 1739–1743.

[Google Scholar] [CrossRef]

5. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–319.

[Google Scholar] [CrossRef]

6. Collavini, S., Völker, S. F., & Delgado, J. L. (2015). Understanding the Outstanding Power Conversion Efficiency of Perovskite-Based Solar Cells. Angewandte Chemie International Edition, 54(34), 9757–9759.

[Google Scholar] [CrossRef]

7. Eames, C., Frost, J. M., Barnes, P. R. F., O’Regan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6, 7497.

[Google Scholar] [CrossRef]

8. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2013). Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 24(1), 151–157.

[Google Scholar] [CrossRef]

9. Gardini, D., Christensen, J. M., Damsgaard, C. D., Jensen, A. D., & Wagner, J. B. (2016). Visualizing the mobility of silver during catalytic soot oxidation. Applied Catalysis B: Environmental, 183, 28–36.

[Google Scholar] [CrossRef]

10. Gonzalez-Pedro, V., Juarez-Perez, E. J., Arsyad, W.-S., Barea, E. M., Fabregat-Santiago, F., Mora-Sero, I., & Bisquert, J. (2014). General Working Principles of CH3NH3PbX3 Perovskite Solar Cells. Nano Letters, 14(2), 888–893.

[Google Scholar] [CrossRef]

11. Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 13(9), 897–903.

[Google Scholar] [CrossRef]

12. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., & Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088–4093.

[Google Scholar] [CrossRef]

13. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050–6051.

[Google Scholar] [CrossRef]

14. Lang, L., Yang, J.-H., Liu, H.-R., Xiang, H. J., & Gong, X. G. (2014). First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A, 378(3), 290–293.

[Google Scholar] [CrossRef]

15. Li, Z., Zhang, M., Cheng, D., & Yang, R. (2016). Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity. Carbohydrate Polymers, 151, 834–840.

[Google Scholar] [CrossRef]

16. Lou, X., Pan, H., Zhu, S., Zhu, C., Liao, Y., Li, Y., … Chen, Z. (2015). Synthesis of silver nanoprisms on reduced graphene oxide for high-performance catalyst. Catalysis Communications, 69, 43–47.

[Google Scholar] [CrossRef]

17. Minemoto, T., & Murata, M. (2014). Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. Journal of Applied Physics, 116(5), 054505.

[Google Scholar] [CrossRef]

18. Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M., & De Angelis, F. (2013). First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C, 117(27), 13902–13913.

[Google Scholar] [CrossRef]

19. Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A. J., Gupta, G., … Mohite, A. D. (2015). High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 347(6221), 522–525.

[Google Scholar] [CrossRef]

20. Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., … Snaith, H. J. (2014). Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 7(9), 3061–3068.

[Google Scholar] [CrossRef]

21. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13(4), 1764–1769.

[Google Scholar] [CrossRef]

22. Saoud, K., Alsoubaihi, R., Bensalah, N., Bora, T., Bertino, M., & Dutta, J. (2015). Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications. Materials Research Bulletin, 63, 134–140.

[Google Scholar] [CrossRef]

23. Sha, W. E. I., Ren, X., Chen, L., & Choy, W. C. H. (2015). The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 106(22), 221104.

[Google Scholar] [CrossRef]

24. Shabani Shayeh, J., Ehsani, A., Ganjali, M. R., Norouzi, P., & Jaleh, B. (2015). Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors. Applied Surface Science, 353, 594–599.

[Google Scholar] [CrossRef]

25. Snaith, H. J. (2013). Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 4(21), 3623–3630.

[Google Scholar] [CrossRef]

26. Sönnichsen, C., Franzl, T., Wilk, T., Plessen, G. von, & Feldmann, J. (2002). Plasmon resonances in large noble-metal clusters. New Journal of Physics, 4, 93–93.

[Google Scholar] [CrossRef]

27. Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., … Snaith, H. J. (2013). Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342(6156), 341–344.

[Google Scholar] [CrossRef]

28. Sun, X., Asadpour, R., Nie, W., Mohite, A. D., & Alam, M. A. (2015). A Physics-Based Analytical Model for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 5(5), 1389–1394.

[Google Scholar] [CrossRef]

29. Umari, P., Mosconi, E., & De Angelis, F. (2014). Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports, 4(1).

[Google Scholar] [CrossRef]

30. Wang, U. (2014, September 28). Perovskite Offers Shot at Cheaper Solar Energy. Retrieved from https://www.wsj.com/articles/perovskite-offers-shot-at-cheaper-solar-energy-1411937799

[Google Scholar]

31. Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.-S., & Chen, G. (2015). Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today, 20(5), 595–601.

[Google Scholar] [CrossRef]

32. Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., … Huang, J. (2014). Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 7(8), 2619–2623.

[Google Scholar] [CrossRef]

33. You, J., Hong, Z., Yang, Y. (Michael), Chen, Q., Cai, M., Song, T.-B., … Yang, Y. (2014). Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 8(2), 1674–1680.

[Google Scholar] [CrossRef]

34. Zhou, Y., Yang, M., Wu, W., Vasiliev, A. L., Zhu, K., & Padture, N. P. (2015). Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Material Chemistry A, 3(15), 8178–8184.

[Google Scholar] [CrossRef]


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Cliff Orori Mosiori, Walter Kamande Njoroge, Lawrence Otieno Ochoo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.