Effect of Surface Passivation on CdxNi1-xS Thin Films Embedded with Nickel Nanoparticles

Cliff Orori Mosiori

Abstract

Certain treatments done to binary CdS, such as incorporating Ni onto CdS produces ternary thin films may cause major optical parameters that have a number of applications including for solar cell device fabrication. In this paper, we report on the effect of surface passivation on the band gap and other related optical properties of CdNiS thin films. Thin films for CdxNi1-xS were prepared on glass substrates by chemical solution method. Effects of surface passivation and variation of the volume of nickel ions on the optical properties CdS hence obtaining CdxNi1-xthin films was investigated. It was observed that the thin films hard an average Transmittance above 68 %, with reflectance below 25 % across UV-VIS-NIR region. A plot of (αhν) 2 versus gave energy band gap between 2.55–3.49 eV for as-grown samples and 2.82–3.50 eV for annealed samples. The passivated samples had band gap energy values within the range 2.85–3.12 eV. It was concluded that an increase in concentration of Cd2+ and Ni2+ ions in the reaction led to an increase the band gap while optical conductivity ranged between 3.78x1011–2.40x1012 S-1.




Keywords


absorbance; annealing; optical conductivity; solar cell; spectrophotometer

Full Text:

PDF


References


1. Amanullah, F., Al-Shammari, S., & Al-Dhafiri, A.(2005). Co-activation effect of chlorine on the physical properties of CdS thin films prepared by CBD technique for photovoltaic applications. Physica Status Solidi (a), 202(13), 2474–2478.

[Google Scholar] [CrossRef]

2. Asogwa, P. U., Ezugwu, S. C., Ezema, F. I., & Osuji, R. U. (2009). Influence of dip time on the optical and solid state properties of as-grown Sb2S3 thin films. Chalcogenide Letters, 6(7), 287–292.

[Google Scholar]

3. Bacaksiz, E., Aksu, S., Yilmaz, S., Parlak, M., & Altunbas, M. (2009). Structural, optical and electrical properties of Al-doped ZnO microrods prepared by spray pyrolysis. Thin Solid Films, 518(15), 4076–4080.

[Google Scholar] [CrossRef]

4. Butti, K., & Perlin, J. (1981). A golden thread: 2500 years of solar architecture and technology. London: Boyars.

[Google Scholar]

5. Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 25(5), 676-681.

[Google Scholar] [CrossRef]

6. Ezenwa, I. A., & Ekpunobi, A. J. (2011). Optical properties and band offsets of CdS/ZnS superlattice deposited by chemical bath. Journal of Non-Oxide Glasses, 3(3), 77–88.

[Google Scholar]

7. Ezugwu, S. C., Ezema, F. I., & Asogwa, P. U. (2010). Synthesis and Characterization of Ternary CuSbS2 Thin Films: Effect of Deposition Time. Chalcogenide Letters, 7(5), 341–348.

[Google Scholar]

8. Ezugwu, S. C., Ezema, F. I., Osuji, R. U., Asogwa, P. U., Ekwealor, A. B. C., & Ezekoye, B. A. (2009). Effect of deposition time on the band-gap and optical properties of chemical bath deposited CdNiS thin films. Optoelectronics and Advanced Materials – Rapid Communications, 3(2), 141–144.

[Google Scholar]

9. Green, M. A. (2002). Third generation photovoltaics: solar cells for 2020 and beyond. Physica E –Low-dimensional Systems and Nanostructure, 14(1–2), 65-70.

[Google Scholar] [CrossRef]

10. Ilenikhena, P. A. (2008). Comparitive Studies of Improved Chemical Bath Deposited Copper Sulphide (CuS) and Zinc Sulphide (ZnS) Thin Films at 320K and Possible Applications. African Physical Review, 2, 59–67.

[Google Scholar]

11. Isah, K. U., Hariharan, N., & Oberafo, A. (2008). Optimization of process parameters of chemical bath deposition of Cd1-xZnxS thin films. Leonardo Journal of Sciences, 12, 111–120.

[Google Scholar]

12. Jeroh, M., & Okoli, D. (1969). Optical, Structural and Morphological Studies of Chemical Bath Deposited Antimony Sulphide Thin Film. Global Journal of Science Frontier Research, 12(2-A). Retrieved from https://journalofscience.org/index.php/GJSFR/article/view/369

13. Khallaf, H., Chai, G., Lupan, O., Chow, L., Heinrich, H., Park, S., & Shulte, A. (2009). In-situ boron doping of chemical-bath deposited CdS thin films. Physica Status Solidi (a), 206(2), 256–262.

[Google Scholar] [CrossRef]

14. Leon, M. A., & Kumar, S. (2007). Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors. Solar Energy, 81(1), 62–75.

[Google Scholar] [CrossRef]

15. Manolache, S. A., Andronic, L., Duta, A., & Enesca, A. (2007). The influence of the deposition condition on crystal growth and on the band gap of CuSbS2 thin film absorber used for Solid State Solar Cells (SSSC). Journal of Optoelectronics and Advanced Materials, 9(5), 1269–1272.

[Google Scholar]

16. Messina, S., Nair, M. T. S., & Nair, P. K. (2007). Antimony sulfide thin films in chemically deposited thin film photovoltaic cells. Thin Solid Films, 515(15), 5777–5782.

[Google Scholar] [CrossRef]

17. Mwathe, P. M., Musembi, R., Munji, M., Odari, B., Munguti, L., Ntilakigwa, A. A., Nguu, J., Aduda, B., & Muthoka, B. (2014). Influence of surface passivation on optical properties of spray pyrolysis deposited Pd-F:SnO2. International Journal of Materials Science and Applications, 3(5), 137–142.

[Google Scholar]

18. Nair, P. K., Barrios-Salgado, E., Capistran, J., Ramon, M. L., Nair, M. T., & Zingaro, R. (2010). PbSe Thin Films in All-Chemically Deposited Solar Cells. Journal of the Electrochemical Society, 157(10), 528–537.

[Google Scholar] [CrossRef]

19. Nair, P. K., Ocampo, M., Fernandez, A., & Nair, M. T. (1990). Solar control characteristics of chemically deposited lead sulfide coatings. Solar Energy Materials, 20(3), 235–243.

[Google Scholar] [CrossRef]

20. Odari, B. V., Musembi, R. J., Mageto, M. J., Othieno, H., Gaitho, F., Mghendi, M., & Muramba, V. (2013). Optoelectronic Properties of F-co-doped PTO Thin Films Deposited by Spray Pyrolysis. American Journal of Materials Science, 3(4), 91-99.

[Google Scholar] [CrossRef]

21. Orori, M. C. (2012). Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications (Doctoral dissertation, Kenyatta University). Retrieved from http://ir-library.ku.ac.ke/bitstream/handle/123456789/6858/Mosiori%20Cliff.pdf?sequence=1

[Google Scholar]

22. Padera, F. (2013). Measuring Absorptance (k) and Refractive Index (n) of Thin Films with the PerkinElmer Lambda 950/1050 High Performance UV-Vis/NIR Spectrometers. Retrieved from https://ru.scribd.com/document/288823820/Thin-Films

[Google Scholar]

23. Paudel, N. R., & Yan, Y. (2013). Fabrication and characterization of high-efficiency CdTe-based thin-film solar cells on commercial SnO2:F-coated soda-lime glass substrates. Thin Solid Film, 549, 30–35.

[Google Scholar] [CrossRef]

24. Reed, S. (1997). Electron Microprobe Analysis. Cambridge: Cambridge University Press.

[Google Scholar]

25. Reynolds, J. A. (1979). An Overview of E-Beam Mask-Making. Solid State Technology, 22(8), 87–94.

26. Subramanian, N. S., Santhi, B., Sundareswaran, S. & Venkatakrishnan, K. S. (2006). Studies on Spray Deposited SnO2, Pd:SnO2 and F:SnO2Thin Films for Gas Sensor Applications. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 36(1), 131–135.

[Google Scholar]

27. Theiss, W. (2002). Scout Thin Film Analysis Software Handbook, Hard and Software. Retrieved from http://www.wtheiss.com/?c=2&content=applications_scout

[Google Scholar]

28. Wöhrle, D., & Meissner, D. (1991). Organic solar cells. Advanced Materials, 3(3), 129–138.

[Google Scholar] [CrossRef]


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Cliff Orori Mosiori

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.