Electrical Behavior of Cd0.3Zn1.1x S0.7 Thin Films for Non-Heat Light Emitting Diodes

Cliff Orori Mosiori, John Maera, Reuben Shikambe, Robert Magare

Abstract

In developing countries like Kenya, solution processing technique is the cheapest and simplest technique to grow inorganic composites thin films. This method was used to grow thin films of Cd0.3Zn1.1xS0.7on ordinary microscope Perspex substrate slides from aqueous solutions of Zinc chloride and cadmium chloride in ammonia solution. A solution of triethanalomine was used as a complexing agent while thiourea was used as source of sulphide ions. Electrical properties as a function of their thicknesses were obtained by varying deposition time while all other parameters were maintained constant. Using a resistance measurement device and a Gauss meter, resistivity and the conductivity of the films were found to be thickness dependent with semiconductor nature.



Keywords


complexing agent; zinc; cadmium; thiourea; resistivity; sulphur

Full Text:

PDF


References


1. Al-Sabayleh, M. (2008). The Effect of substrate temperature on the optical properties of spray deposited ZnS thin films prepared from non-aqueous media. Umm Al-Qura University Journal of Science – Medicine – Engineering, 20(1), 17–30.

[Google Scholar]

2. Ashour, A., Afifi, H., & Mahmoud, S. (1994). Effect of some spray pyrolysis parameters on electrical and optical properties of ZnS films. Thin Solid Films, 248(2), 253–256.

[Google Scholar] [CrossRef]

3. Bhattacharjee, B., Ganguli, D., Iakoubovskll, K., Stesmans, A., & Chaudhuri, S. (2002). Synthesis and characterization of sol-gel derived ZnS : Mn2+ nanocrystallites embedded in a silica matrix. Bulletin of Materials Science, 25(3), 175–180.

[Google Scholar] [CrossRef]

4. Cheng, J., Fang, D., Wang, H., Liu, B., Zhang, Y., & Yan, H. (2003). Chemical bath deposition of crystalline ZnS thin films. Semiconductor Science and Technology, 18(7), 676–679.

[Google Scholar] [CrossRef]

5. Kitagawa, M., Tomomura, Y., Nakanishi, K., Suzuki, A., & Nakajima, S. (1990). Photo-assisted homoepitaxial growth of ZnS by molecular beam epitaxy. Journal of Cristal Growth, 101(1–4), 52–55.

[Google Scholar] [CrossRef]

6. Mosiori C., Maera, J., & Njoroge, W. (2015). Absorbance in chemical bath deposited CuS thin films. Standard Scientific Research and Essays, 2(13), 739–742.

7. Mosiori, C. (2013). Effect of dielectric constant on energy losses in lead sulphide thin films grown by solution method at room temperature. International Journal of Physical Sciences, 8(34), 1716–1721.

[Google Scholar]

8. Mosiori, C., Njoroge, W., & Okumu, J. (2014). Electrical and optical characterization of CdxZn1-xS thin films deposited by chemical bath deposition in alkaline conditions. Direct Research Journal of Chemistry and Material Science, 2(1), 13–20.

[Google Scholar]

9. Mosiori, C., Maera, J., Njoroge, W., Shikambe, T., Munji, M., & Magare, R. (2015). Modeling Transfer of Electrons between Energy States of an Electrolyte and CdS thin Films using Gerischer Model. Engineering International, 3(1), 35–44.

[Google Scholar]

10. Mosiori, C., & Maera, J. (2015) Electrical Analysis of Bis (2-Amino-4-Methylpyridinium) Tetrachloridozincate Compound Grown by Chemical Bath Deposition at Ambient Temperature and Pressure Conditions. Chemistry Journal, 5(6), 108–114.

11. Mosiori, C., Njororge, W., & Okumu, J. (2014). Optical and Electrical Properties of Pbs Thin Films Grown by Chemically Bath Deposition [CBD] at Different Lead Concentrations. International Journal of Advanced Research in Physical Science, 1(1), 25–32.

[Google Scholar]

12. Nadeem, M., & Ahmed, W. (2000). Optical Properties of ZnS Thin Films. Turkish Journal of Physics, 4, 651–659.

[Google Scholar]

13. Nair, P., & Nair, M. (1992). Chemically deposited ZnS thin films: application as substrate for chemically deposited Bi2S3, CuxS and PbS thin films. Semiconductor Science and Technology, 7(2), 239–244.

[Google Scholar]

14. Pike, R. D., Cui, H., Kershaw, R., Dwight, K., & Wold, A. (1993). Preparation of zinc sulfide thin films by ultrasonic spray pyrolsis from bis(diethyldithiocarbamato) zinc(II). Thin Solid Films, 224(2), 221–226.

[Google Scholar] [CrossRef]

15. Su, B., & Choy, K. (2000). Electrostatic assisted aerosol jet deposition of CdS, CdSe, and ZnS thin films. Thin Solid Films, 361–362, 102–106.

[Google Scholar] [CrossRef]

16. Ubale, A. U., & Kulkani, D. K. (2005). Preparation and study of thickness dependent electrical characteristics of zinc sulfide thin films. Bulletin of Materials Science, 28(1), 43–47.

[Google Scholar] [CrossRef]

17. Ugwu, E., & Onah, D. (2007). Optical Characteristics of Chemical Bath Grown CdS Thin Film Characteristics within UV, Visible, and NIR Radiation. The Pacific Journal of Science and Technology, 8(1), 155–161.

[Google Scholar]

18. Zhang, R., Wang, B., Wan, D., & Wei, L. (2004). Effects of the sulfidation temperature on the structure, composition and optical properties of ZnS films prepared by sulfurizing ZnO films. Optical Materials, 27(3), 419–423.

[Google Scholar] [CrossRef]


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Cliff Orori Mosiori, John Maera, Reuben Shikambe, Robert Magare

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.