Application of Markov Model in Crude Oil Price Forecasting
Abstract
Keywords
Full Text:
PDFReferences
1. Xiu, S., & Shahbazi, A. (2012). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 16(7), 4406–4414.
2. Xie, W, Yu, L, Xu, S., & Wang, S. (2006). A new method for crude oil price forecasting based on support vector machines. In V. N. Alexandrov, van G. D. Albada, P. M. A. Sloot, J. Dongarra (Eds.), Computational Science – ICCS 2006. Lecture Notes in Computer Science (Vol. 3994, p. 444–451). Berlin: Springer Heidelberg.
3. Tang, L., & Hammoudeh, S. (2002). An empirical exploration of the world oil price under the target zone model. Fuel And Energy Abstracts, 24(6), 577–596.
4. Radchenko, S. (2005). Oil price volatility and the asymmetric response of gasoline prices to oil price increases and decreases. Energy economics, 27(5), 708–730.
5. Pereboichuk, B. (2013). Modeling of Crude Oil Prices With a Special Emphasis on Macroeconomic Factors (Doctoral thesis). Retrieved from http://studenttheses.cbs.dk/bitstream/handle/10417/4420/bogdana_pereboichuk.pdf?sequence
6. Kilian, L., & Murphy, D. P. (2014). The role of inventories and speculative trading in the global market for crude oil. Journal of Applied Econometrics, 29(3), 454–478.
7. Kaufmann, R. K., Bradford, A., Belanger. L. H., Mclaughlin. J. P., & Miki, Y. (2008). Determinants of OPEC production: Implications for OPEC behavior. Energy Economics, 30(2), 333–351.
8. Kaufmann, R. K. (2011). The role of market fundamentals and speculation in recent price changes for crude oil. Energy Policy, 39(1), 105–115.
9. Davig, B. T, Nie, J., & Smith, A. L. (2015). Evaluating a Year of Oil Price Volatility. Retrieved from https://www.kansascityfed.org/~/media/files/publicat/econrev/econrevarchive/2015/3q15davigetal.pdf
10. Bopp, A. E., & Lady, G. M. (1991). A comparison of petroleum futures versus spot prices as predictors of prices in the future. Energy Economics, 13(4), 274–282.
11. Chatfield, C. (2014). The analysis of time series: an introduction (6th ed.). Ontario: Hoboken CRC Press.
12. Teo, T. T., Logenthiran, T., & Woo, W. L. (2016, November). Forecasting of photovoltaic power using extreme learning machine. In 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016 (p. 455–458).
13. Li, H., Pan, Y., & Zhou, Q. (2015). Filter design for interval type-2 fuzzy systems with D stability constraints under a unified frame. IEEE Transactions on Fuzzy Systems, 23(3), 719–725.
14. Farhadi, H., AmirHaeri, M., & Khansari, M. (2015). Alert correlation and prediction using data mining and HMM. The ISC International Journal of Information Security, 3(2), 77–101.
15. Wilson, A. D., & Bobick, A. F. (1999). Parametric hidden Markov models for gesture recognition. IEEE transactions on pattern analysis and machine intelligence, 21(9), 884–900.
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Nuhu Isah, Abdul Talib Bon

This work is licensed under a Creative Commons Attribution 4.0 International License.