Phytotoxicity of the Substrate of Coal Mine Dumps under the Influence of Thermal Power Plant ash and Potassium Humate

Yaroslav Shpak, Iryna Zapisotska, Volodymyr Baranov, Olha Terek

Abstract

The influence of ash from the Dobrotvir thermal power plant dumps and potassium humate "STB-45" on the phytotoxicity of the rock dumps substrate of coal mines in Chervonograd mining region has been researched. Sudan grass Sorghum bicolor subsp. drummondii (Nees ex Steud.) has been used as a biotester. The increase of the stem height, leaf area, length and mass of roots under the influence of the addition of ash dumps to the substrate has been discovered. Application of the humate only has increased just the leaf area and the mass of roots. Adding ash with humate significantly increased the value of all the studied morphometric parameters and the influence on the mass of roots was more effective than under the use of the ash only.

It has been found out that adding humate increases chlorophyll a in leaves. Adding ash and humate with ash demonstrated increasing chlorophyll a together with the simultaneous reduction of feofityn a.

Increased values of morphometric parameters of the Sudan grass, increase of chlorophyll content, combined with the reduction of feofityn, indicates the reduction of stress for plants, caused by phytotoxicity.

It has been discovered that the use of coal ash from thermal power plants together with potassium Gumat "STB-45" for reducing phytotoxicity of dumps is more effective than the use of just one of the meliorants.



Keywords


Phytotoxicity; Sudan grass; waste heaps of coal mines; coal ash; potassium humate.



References


1. Baranov, V. I. (2008). Ekolohichnyi opys porodnoho vidvalu vuhilnykh shakht TsZF ZAT «Lvivsystemenerho» yak subiekta ozelenennia [Ecological scope of rock dump coal mines CCM CJ-SC "Lvivsistemenergo" as subject to plant trees and grass]. Visnyk of the Lviv University. Series Biology, 46, 172–178 (in Ukrainian)
[Баранов, В. І. (2008). Екологічний опис породного відвалу вугільних шахт ЦЗФ ЗАТ «Львівсистеменерго» як суб’єкта озеленення. Вісник Львівського університету. Серія біологічна, 46, 172–178].

[Google Scholar]

2. Baranov, V., Banya A., Bodnar L., Blayda І., & Karpenko О. (2014). Toksykolohichnyi analiz vody drenazhnykh kanav i zoly zolovidvaliv Dobrotvirskoi TES [Toxicological analysis of water drainage and ash dump Dobrotvir thermal power station]. Visnyk of the Lviv University. Series Biology, 65,i 238–244 (in Ukrainian)
[Баранов, В., Баня, А., Боднар, Л., Блайда, І., & Карпенко, О. (2014). Токсикологічний аналіз води дренажних канав і золи золовідвалів Добротвірської ТЕС. Вісник Львівського університету. Серія Біологічна, 65, 238–244].

[Google Scholar]

3. Beshley Z. M., Beshley S. V., Baranov V. I., & Terek O. I. (2015). Porivnialnyi morfometrychnyi analiz roslyn sorho alepskoho za umov rostu na substratakh porodnoho vidvalu z dodavanniam netradytsiinykh dobryv [Comparative morphometric analysis of sorghum halepense plants growing on substrates of rock dump with addition of alternative fertilizers]. Modern Phytomorphology, 6, 347–348 (in Ukrainian)
[Бешлей, З., Бешлей, С., Баранов, В., & Терек, О. (2015). Порівняльний морфометричний аналіз рослин сорго алепського за умов росту на субстратах породного відвалу з додаванням нетрадиційних добрив. Modern Phytomorphology, 6, 347–348].

4. Lakyn, G. F.(1990). Byometryya [Biometry] (4th ed.). Moscow: Vysshaya shkola (in Russian) [Лакин, Г. Ф. (1990). Биометрия (4-е изд.). Москва: Высшая школа].

[Google Scholar]

5. Makeeva, N. A. (2014). Ocenka produkcionnyh processov ovsa v uslovijah vnesennja gumatov kalija i natrija na porodnyj otval [Assessment of production processes oats in terms of humates potassium and sodium on dump]. Sovremennye problemy nauki i obrazovanija, 6 (in Russian)
[Макеева, Н. А. (2014). Оценка продукционных процессов овса в условиях внесення гуматов калия и натрия на породный отвал. Современные проблемы науки и образования. 2014. №6].

[Google Scholar]

6. Pavlova, L.M., Kotelnikova, I.M., Kuimova, N.G., Leusova, N.U., & Schumilova, L.P. (2010). Sostojanie fotosinteticheskih pigmentov v vegetativnyh organah drevesnyh rastenij v gorodskoj crede [Photosynthetic Pigments’ Condition in Vegetative Organs of Woody Plants in Urban Environment]. Vestnik RUDN, serija Jekologija i bezopasnost' zhiznedejatel'nosti , 2, 11–19 (in Russian)
[Павлова, Л. М., Котельникова, И. М., Куимова, Н. Г., Леусова, Н. Ю., & Шумилова, Л. П. (2010). Состояние фотосинтетических пигментов в вегетативных органах древесных растений в городской cреде. Вестник РУДН. Серия: Экология и безопасность жизнедеятельности, 2, 11–18].

[Google Scholar]

7. Amuthavalli, P., Sivasankaramoorthy S. (2012). Effect of Salt Stress on the Growth and Photosynthetic Pigments of Pigeon Pea (Cajanus cajan). Journal of Applied Pharmaceutical Science, 2(11), 131–133.

[Google Scholar] [CrossRef]

8. Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163–190.

[Google Scholar] [CrossRef]

9. Escarrу, J., Raboyeau, S., Dossantos, A., Collin, C. (2011). Heavy Metal Concentration Survey in Soils and Plants of the Les Malines Mining District (Southern France): Implications for Soil Restoration. Water, Air, & Soil Pollution, 216(1), 485–504.

[Google Scholar] [CrossRef]

10. Firpo, B., Filho, J., & Schneider, I. (2015). A brief procedure to fabricate soils from coal mine wastes based on mineral processing, agricultural, and environmental concepts. Minerals Engineering, 76, 81–86.

[Google Scholar] [CrossRef]

11. Gratao, P., Polle, A., Lea, P. & Azevedo, R. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32(6), 481–494.

[Google Scholar] [CrossRef]

12. Gupta, A, Paul, B. (2016). Augmenting the Stability of OB Dump by Using Fly Ash: A Geo Technical Approach to Sustainably Manage OB Dump at Jharia Coalfield, India. Current World Environment, 11(1), 204–211.

[Google Scholar] [CrossRef]

13. Kumar, B. M. (2013). Mining waste contaminated lands: an uphill battle for improving crop productivity. Journal of Degraded and Mining Lands Management, 1(1), 43–50.

[Google Scholar]

14. Lichtenthaler, H. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology,148, 350–382.

[Google Scholar] [CrossRef]

15. Malti D., Malti, S. (2014). Ecorestoration Of Waste Dump By The Establishment Of Grass-Legume Cover. International Journal of Scientific & Technology Research, 3(3), 37–41.

[Google Scholar]

16. Nath, K., Singh, D., Shyam, S., & Sharma, Y. K. (2008). Effect of chromium and tannery effluent toxicity on metabolism and growth in cowpea (Vigna sinensis L. Saviex Hassk) seedling. Research in Environment and Life Sciences, 1(3), 91–94.

[Google Scholar]

17. Offord, C. A., Meagher, P. F., & Zimmer, H.C. (2014). Growing up or growing out? How soil pH and light affect seedling growth of a relictual rainforest tree. AoB PLANTS, 6, plu011.

[Google Scholar] [CrossRef]

18. Olivera, H. (2012). Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. Journal of Botany, 2012, 1–8.

[Google Scholar] [CrossRef]

19. Perminova, I.V., Hatfield K., Hertkorn N. (Eds.). (2002). Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice. Dordrecht: Springer.

[Google Scholar]

20. Singh, H., Mahajan, P., Kaur, S., Batish D., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229–254.

[Google Scholar] [CrossRef]

21. Singh, R. K., & Gupta, N. C. (2014). Value added utilization of fly ash- prospective and sustainable solutions. International Journal of Applied Sciences and Engineering Research, 3(1), 1–16.

[Google Scholar]

22. Smolikova, G. N., Laman, N. A., & Boriskevich, O. V (2011). Role of chlorophylls and carotenoids in seed tolerance to abiotic stressors. Russian Journal of Plant Physiology, 58, 965–973.

[Google Scholar] [CrossRef]

23. Srivastava, A., & Chhnkar, P. (2000). Amelioration of coal mine spoils through fly ash application as liming material. Journal of Scientific & Industrial Research, 59, 309–313.

[Google Scholar]

24. Tsang, D. C. W., Olds W. E., & Weber, P. (2013). Residual leachability of CCA-contaminated soil after treatment with biodegradable chelating agents and lignite-derived humic substances. Journal of Soils and Sediments, 13, 895–905.

[Google Scholar] [CrossRef]

25. Wintermans, J. F. G. M., & de Mots, А. (1965). Spectrophotometric characteristics of chlorophyll 'a' and 'b' and their pheophytins in ethanol. Biochimica et Biophysica Acta, 109(2), 448–453.

[Google Scholar] [CrossRef]

26. Normatyvno-dyrektyvni dokumenty MOZ Ukrainy. (1999). Derzhavni sanitarni pravyla ta normy [State sanitary rules and norms]. Retrieved February 20, 2017, from http://mozdocs.kiev.ua/view.php?id=4010 (in Ukrainian)
[Нормативно-директивні документи МОЗ України. (1999). Державні санітарні правила та норми. Актуально на 20.02.2017, URL: http://mozdocs.kiev.ua/view.php?id=4010].


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Y. Shpak, I. Zapisotska, V. Baranov, O. Terek

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.