Kinetic and Isotherm Studies of Methyl Violet Adsorption onto Carbonized Waterlily (Nymphaea lotus) Leaves Powder

Abdullahi Muhammad Ayuba, Hamisu Abdulmumini, Mohammed Mukhtar Mohammed, Solomon Daniel

Abstract

In this study, the adsorption of methyl violet from an aqueous solution using carbonised water lily (CWL) leaves powder as a low-cost, efficient and eco-friendly adsorbent was investigated using a batch system under controlled conditions. The adsorbent's moisture, organic matter, ash, bulk density, pore volume, and pH were determined. The adsorbents were characterised by scanning electron microscopy (SEM) and Fourier Transform Infrared (FT-IR) techniques which confirm the adsorption of the methyl violet onto the CWL adsorbents. The effect of adsorption parameters such as contact time, dosage, initial concentration, pH and temperature were studied for optimisation. It was confirmed that contact time, dosage, concentration, pH and temperature positively affected the adsorption process. The kinetic data were best described by pseudo-second order under all experimental temperatures. The adsorption isotherms were estimated and established to fit nicely into the D-R model compared to other models generated and tested. Thermodynamic studies of the sorption process indicate that the process was feasible, spontaneous, and exothermic and decrease in the randomness of the adsorption process during the transfer of molecules between the adsorbent and adsorbates with entropy (∆S) of 23.77 J/mol.K. due to negative values of Gibb’s free energy observed. This study confirmed that CWL could be employed as a low-cost, eco-friendly adsorbent for removing toxic dyes such as methyl violet from an aqueous solution.




Keywords


carbonised water lily; equilibrium; thermodynamics; adsorption; kinetics; isotherms

Full Text:

PDF


References


1. Muhd Din, A. T., & Hameed, B. H (2010). Adsorption of methyl violet on acid modified activated carbons: Isotherms and Thermodynamics. Journal of Applied Science in environmental Sanitation, 5(N), 151–160.

2. Safarzadeh, H., Peighambardoust, S. J., Mousavi, S. H., Mohammadi, R., & Peighambardoust, S. H. (2022). Adsorption of methyl violet dye from wastewater using poly(methacrylic acid-co-acrylamide)/bentonite nanocomposite hydrogels. Journal of Polymer Research, 29(4). doi: 10.1007/s10965-022-02956-0

3. Nhung, N. T. H., Quynh, B. T. P., Thao, P. T. T., Bich, H. N., & Giang, B. L. (2018). Pretreated Fruit Peels as Adsorbents for Removal of Dyes from Water. IOP Conference Series: Earth and Environmental Science, 159, 012015. doi: 10.1088/1755-1315/159/1/012015

4. Ajji, Z., & Ali, A. M. (2007). Adsorption of methyl violet and brilliant blue onto poly(vinyl alcohol) membranes grafted with N-vinyl imidazole/acrylic acid. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 265(1), 362–365. doi: 10.1016/j.nimb.2007.09.004

5. Raghu, S., & Ahmed Basha, C. (2007). Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater. Journal of Hazardous Materials, 149(2), 324–330. doi: 10.1016/j.jhazmat.2007.03.087

6. Chen, F., Liu, X., Yu, C., Chen, Y., Tang, H., & Zhang, L. (2017). Water lilies as emerging models for Darwin’s abominable mystery. Horticulture Research, 4(1). doi: 10.1038/hortres.2017.51

7. Tani, M., Sawada, A., & Oyabu, T (2006). Ability of water lilies to purify water polluted by soap and their applications in domestic sewage disposal facilities. Sensors and materials, 18(2), 91–101.

8. Phatai, P., Utara, S., & Hatthapanit, N. (2013). Removal of Methyl Violet by Adsorption onto Activated Carbon Derived from Coffee Residues. Advanced Materials Research, 864–867, 710–714. doi: 10.4028/www.scientific.net/amr.864-867.710

9. Bonetto, L. R., Ferrarini, F., de Marco, C., Crespo, J. S., Guégan, R., & Giovanela, M. (2015). Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. Journal of Water Process Engineering, 6, 11–20. doi: 10.1016/j.jwpe.2015.02.006

10. Saravanan, N., & Rathika, G. (2018). Adsorption Studies of Methyl Violet Dye using Biosorbents. International Journal of ChemTech Research, 11(7), 84–94. doi: 10.20902/ijctr.2018.110711

11. Zhai, H., Zou, J., Liu, F., Chen, F., Yan, X., & Zhou, W. (2020). Adsorption removal of methyl violet from aqueous solution by chromium phosphovanadate. Surface and Interface Analysis, 53(1), 76–83. doi: 10.1002/sia.6874

12. You, X., Zhou, R., Zhu, Y., Bu, D., & Cheng, D. (2022). Adsorption of dyes methyl violet and malachite green from aqueous solution on multi-step modified rice husk powder in single and binary systems: Characterization, adsorption behavior and physical interpretations. Journal of Hazardous Materials, 430, 128445. doi: 10.1016/j.jhazmat.2022.128445

13. Foroutan, R., Mohammadi, R., Ahmadi, A., Bikhabar, G., Babaei, F., & Ramavandi, B. (2022). Impact of ZnO and Fe3O4 magnetic nanoscale on the methyl violet 2B removal efficiency of the activated carbon oak wood. Chemosphere, 286, 131632. doi: 10.1016/j.chemosphere.2021.131632

14. Geremew, B., & Zewde, D. (2022). Hagenia abyssinica leaf powder as a novel low-cost adsorbent for removal of methyl violet from aqueous solution: Optimization, isotherms, kinetics, and thermodynamic studies. Environmental Technology & Innovation, 28, 102577. doi: 10.1016/j.eti.2022.102577

15. Syakina, A. N., & Rahmayanti, M. (2023). Removal of Methyl Violet from Aqueous Solutions by Green Synthesized Magnetite Nanoparticles with Parkia Speciosa Hassk. Peel Extracts. doi: 10.2139/ssrn.4329442

16. Gaya, U. I., Otene, E., & Abdullah, A. H. (2015). Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell. SpringerPlus, 4(1). doi: 10.1186/s40064-015-1256-4

17. Anisuzzaman, S. M., Joseph, C. G., Daud, W. M. A. B. W., Krishnaiah, D., & Yee, H. S. (2014). Preparation and characterization of activated carbon from Typha orientalis leaves. International Journal of Industrial Chemistry, 6(1), 9–21. doi: 10.1007/s40090-014-0027-3

18. Ibrahim, M. B., & Sani, S. (2015). Neem (Azadirachta indica) Leaves for Removal of Organic Pollutants. Journal of Geoscience and Environment Protection, 3(2), 1–9. doi: 10.4236/gep.2015.32001

19. Amode, J. O., Santos, J. H., Md. Alam, Z., Mirza, A. H., & Mei, C. C. (2016). Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: equilibrium and kinetics studies. International Journal of Industrial Chemistry, 7(3), 333–345. doi: 10.1007/s40090-016-0085-9

20. Muhammad, A. A., & Aondofa, N. T. (2020). Paraquat dichloride adsorption from aqueous solution using Carbonized Bambara Groundnut Vigna subterranean) Shells. Bayero Journal of Pure and Applied Sciences, 12(1), 167–177. doi: 10.4314/bajopas.v12i1.28s

21. Giwa, S. O., Moses, J. S., Adeyi, A. A., & Giwa, A. (2018). Adsorption of Atrazzine from aqueous solution using Desert Date Seed Shell activated Carbon. ABUAD Journal of Engineering Research & Development, 1(3), 317–325.

22. Muhd Din, A.T., Yew, H. F. C., & Malik, A (2009). A liquid-phase batch adsorption study of methyl violet dye removal using acid modified activated carbon. 16th ASEAN Regional Symposium on Chemical Engineering. Retrieved from https://www.researchgate.net/publication/271967433_A_Liquid-Phase_Batch_Adsorption_Study_of_Methyl_Violet_Dye_Removal_Using_Acid_Modified_Activated_Carbon

23. Manjunatha, K. R., & Vagish, M (2016). Study on adsorption efficacy of neem leaves powder in the removal of reactive red dye colour from aqueous solution. International Research Journal Engineering & Technology, 3, 12–24.

24. Majithiya, D., Yadav, A., & Tawde, S. (2013). Comparative studies of Azidirachta indica (Neem) leaf powder and activated carbon as an adsorbent for removal of chromium from an aqueous solution. Journal of environmental science and sustainability, 1(1), 21–27.

25. Dülger, Ö., Turak, F., Turhan, K., & Özgür, M. (2013). Sumac Leaves as a Novel Low-Cost Adsorbent for Removal of Basic Dye from Aqueous Solution. ISRN Analytical Chemistry, 2013, 1–9. doi: 10.1155/2013/210470

26. Shahryari, Z., Goharrizi, S.A., & Azadi, M. (2010). Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tube. International Journal of water Resources and environmental engineering, 2(2), 016–028.

27. Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry, 10, S3229–S3238. doi: 10.1016/j.arabjc.2013.12.019

28. Xiong, W., Tong, J., Yang, Z., Zeng, G., Zhou, Y., Wang, D., Song, P., Xu, R., Zhang, C., & Cheng, M. (2017). Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism. Journal of Colloid and Interface Science, 493, 17–23. doi: 10.1016/j.jcis.2017.01.024

29. Jimoh, A. O., Namadi, M. M., Ado, K., & Muktar, B. (2016). Proximate and Ultimate Analysis of Eichornia natans (Water Hyacinth), Pistia stratiotes (Water Lettuce) and Nymphaea lotus (Water Lily) in the Production of Biofuel. Advances in Applied Research, 7(4), 243–249.

30. Efomah, A. N., & Gbabo, A. (2015). The Physical, Proximate and Ultimate Analysis of Rice Husk Briquettes Produced from a Vibratory Block Mould Briquetting Machine. International Journal of Innovative Science, Engineering and Technology, 2(5), 814–822.

31. Bello, O. S., Adegoke, K. A., & Akinyunni, O. O. (2015). Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Applied Water Science, 7(3), 1295–1305. doi: 10.1007/s13201-015-0345-4

32. Okieimen, F. E., Okieimen, C. O., Wuana, R. A. (2007). Preparation and characterization of activated carbon from rice husk. Journal of Chemical Society, 32(1), 126–136.

33, Bekçi, Z., Seki, Y., & Cavas, L. (2009). Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea. Journal of Hazardous Materials, 161(2–3), 1454–1460. doi: 10.1016/j.jhazmat.2008.04.125

34. Pradeep Sekhar, C., Kalidhasan, S., Rajesh, V., & Rajesh, N. (2009). Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere, 77(6), 842–847. doi: 10.1016/j.chemosphere.2009.07.068

35, Bello, O. S., & Ahmad, M. A. (2011). Response Surface Modeling and Optimization of Remazol Brilliant Blue Reactive Dye Removal Using Periwinkle Shell-Based Activated Carbon. Separation Science and Technology, 46(15), 2367–2379. doi: 10.1080/01496395.2011.595756

36. Bello, O. S., & Ahmad, M. A (2011). Adsorption of dyes from aqueous solution using chemical activated mango peels. 2nd International Conference on Environmental Science and Technology, 2, 108–113.

37. Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal, 148(2–3), 354–364. doi: 10.1016/j.cej.2008.09.009

38. Abubakar, A., & Batagarawa, S. M. (2018). Kinetic and isotherm studies of malachite green and Congo red adsorption from aqueous solution by corn stalk bio-waste material. Bayero Journal of Pure and Applied Sciences, 10(1), 350. doi: 10.4314/bajopas.v10i1.70s

39. Li, K., Zheng, Z., Huang, X., Zhao, G., Feng, J., & Zhang, J. (2009). Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre. Journal of Hazardous Materials, 166(1), 213–220. doi: 10.1016/j.jhazmat.2008.11.007

40. Özacar, M., & Şengil, İ. A. (2005). Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresource Technology, 96(7), 791–795. doi: 10.1016/j.biortech.2004.07.011

41. Abdus-Salam, N., & Adekola, S. K. (2018). Adsorption studies of zinc(II) on magnetite, baobab (Adansonia digitata) and magnetite–baobab composite. Applied Water Science, 8(8). doi: 10.1007/s13201-018-0867-7

42. Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2013). Removal of Methyl Violet 2B from Aqueous Solution UsingCasuarina equisetifoliaNeedle. ISRN Environmental Chemistry, 2013, 1–8. doi: 10.1155/2013/619819

43. Li, C., Zhang, X., Pan, J., Xu, P., Liu, Y., Yan, Y., & Zhang, Z. (2009). Strontium(II) Ion Surface-Imprinted Polymers Supported by Potassium Tetratitanate Whiskers: Synthesis, Characterization and Adsorption Behaviours. Adsorption Science & Technology, 27(9), 845–859. doi: 10.1260/0263-6174.27.9.845

44. Gautam, R. K., Mudhoo, A., Lofrano, G., & Chattopadhyaya, M. C. (2014). Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering, 2(1), 239–259. doi: 10.1016/j.jece.2013.12.019

45. Pan, X., & Zhang, D (2009). Removal of malachite green from water by firmiana simplex wood fiber. E-journal of Biotechnology, 12(4). Retrieved from https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582009000400009

46. Ayuba, A. M., & Abdulmumini, H. (2022). Raw water lily leaves (Nymphaea Lotus) powder as an effective adsorbent for adsorption of malachite green dye from aqueous solution. Chemical Review and Letters, 5, 250–260.

47. Ullah, S., Ur Rahman, A., Ullah, F., Rashid, A., Arshad, T., Viglašová, E., Galamboš, M., Mahmoodi, N. M., & Ullah, H. (2021). Adsorption of Malachite Green Dye onto Mesoporous Natural Inorganic Clays: Their Equilibrium Isotherm and Kinetics Studies. Water, 13(7), 965. doi: 10.3390/w13070965

48. Dehghani, M. H., Farhang, M., Alimohammadi, M., Afsharnia, M., & Mckay, G. (2018). Adsorptive removal of fluoride from water by activated carbon derived from CaCl2-modified Crocus sativus leaves: Equilibrium adsorption isotherms, optimization, and influence of anions. Chemical Engineering Communications, 205(7), 955–965. doi: 10.1080/00986445.2018.1423969

49. Aondofa, N. T., Ayuba, A. M. (2020). Kinetic and equilibrium studies of paraquat dichloride adsorption of raw Bambara groundnut (Vigna subterranean) shells. Applied Journal of Environmental Engineering Sciences, 6(1), 1–13.

50. Nica, C., Zaharia, R.I., Boron, S., & Coseri, D. S. (2020). Adsorptive materials based on preparation, characterization and application of copper iron retention. Cellulose Chemistry Technology, 54(5-6), 579–590.

51, Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F., & Trouvé, G. (2011). Biosorption of basic dye from aqueous solutions by Date Stones and Palm-Trees Waste: Kinetic, equilibrium and thermodynamic studies. Desalination, 271(1–3), 80–87. doi: 10.1016/j.desal.2010.12.009


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks





Copyright (c) 2023 Abdullahi Muhammad Ayuba, Hamisu Abdulmumini, Mohammed Mukhtar Mohammed, Solomon Daniel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.