Prediction of the Phytochemical Properties of Luffa Cylindrica Seed Oil Using Artificial Neural Network

Udemgba Chinonso Stanley, Amarachi Anyawu Solace, Amaefule Excel Obumneme, Odoemelam Patience Ogechi, Okam Chukwu Emmanuel, Odo Godfrey Ifeanyi, Nnaemeka Nwachuckwu Chukwudi, Sandra Ijeoma Izuchukwu, Iheanacho Eberechi Clement, Ogbonna Chiemezuo Chinedu, Sunday Okechukwu, Moses Chukwuebuka Okwudifele

Abstract

The research used an artificial neural network (ANN) to examine optimum extraction conditions and phytochemical contents of Luffa cylindrica seed oil. The oil yield was predicted using an artificial neural network. The performance of the ANN and response surface methodology models was compared. The optimum extraction yielded 7.567% oil yield, 185.676 mg/l phenol, and 45.087 mg/l terpineol at 75.57 °C extraction temperature, 5.77 h extraction time, and 10.68 g/mol n-hexane concentration, respectively. These data show that the oil output is poor but has a significant phenol and terpenoid content that may be employed in pharmaceutical sectors. The FT-IR analysis of Luffa cylindrica seed oil revealed a high level of unsaturated hydrocarbons and esters, making the oil appropriate for using in the paint industry and creating cosmetics.



Keywords


Artificial Neural Networks; Luffa cylindrica seed oil; alkyd resin; phytochemicals

Full Text:

PDF


References


Bello, M. O., Akindele, T. L., Adeoye, D. O., & Oladimeji, A. O. (2011). Physicochemical Properties and Fatty Acids Profile of Seed Oil of Telfairiaoccidentalis Hook, F. International Journal of Basic & Applied Sciences, 11(6), 9–14.

Dorado, M. P., Ballesteros, E., López, F. J., & Mittelbach, M. (2003). Optimization of Alkali-Catalyzed Transesterification of Brassica Carinata Oil for Biodiesel Production. Energy & Fuels, 18(1), 77–83. doi: 10.1021/ef0340110

Atlas of Florida Plants. Institute for Semantic Botany. (n. d.). Luffa aegyptica. Retrieved from https://florida.plantatlas.usf.edu/plant.aspx?id=178

CABI Compendium. (2022). Luffa aegyptiaca (loofah). doi: 10.1079/cabicompendium.31693

Yetilmezsoy, K., & Demirel, S. (2008). Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. Journal of Hazardous Materials, 153(3), 1288–1300. doi: 10.1016/j.jhazmat.2007.09.092

Topallar, H., & Gecgel, U. (2000). Kinetics and Thermodynamics of Oil Extraction from Sunflower Seeds in the Presence of Aqueous Acidic Hexane Solutions. Turkish Journal of Chemical, 24(3), 247–253.

Zhang, Y.-J., Gan, R.-Y., Li, S., Zhou, Y., Li, A.-N., Xu, D.-P., & Li, H.-B. (2015). Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules, 20(12), 21138–21156. doi: 10.3390/molecules201219753

Du, G., Sun, L., Zhao, R., Du, L., Song, J., Zhang, L., He, G., Zhang, Y., & Zhang, J. (2016). Polyphenols: Potential source of drugs for the treatment of ischaemic heart disease. Pharmacology & Therapeutics, 162, 23–34. doi: 10.1016/j.pharmthera.2016.04.008

Arts, I. C., & Hollman, P. C. (2005). Polyphenols and disease risk in epidemiologic studies. The American Journal of Clinical Nutrition, 81(1), 317S-325S. doi: 10.1093/ajcn/81.1.317s

Thiede, A., & Zidenberg-Cherr, S. (2016, June). Nutrition and Health Info Sheet: Phytochemicals. Retrieved from https://nutrition.ucdavis.edu/sites/g/files/dgvnsk426/files/content/infosheets/factsheets/fact-pro-phytochemical.pdf

Baby, B. V. (2004). Process Plant Simulation. Oxford: Oxford University Press.

Mandal, S., Sivaprasad, P. V., Venugopal, S., & Murthy, K. P. N. (2009). Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Applied Soft Computing, 9(1), 237–244. doi: 10.1016/j.asoc.2008.03.016

Baş, D., Dudak, F. C., & Boyacı, İ. H. (2007). Modeling and optimization IV: Investigation of reaction kinetics and kinetic constants using a program in which artificial neural network (ANN) was integrated. Journal of Food Engineering, 79(4), 1152–1158. doi: 10.1016/j.jfoodeng.2006.04.004

Kose, E. (2008). Modelling of colour perception of different age groups using artificial neural networks. Expert Systems with Applications, 34(3), 2129–2139. doi: 10.1016/j.eswa.2007.02.036

Afolabi, T., Onifade, K., Akindipe, V., & Odetoye, T. (2015). Optimization of Solvent Extraction of Parinari polyandra Benth Seed Oil Using Response Surface Methodology. British Journal of Applied Science & Technology, 5(5), 436–446. doi: 10.9734/bjast/2015/10747

Olaniyan, Adesoji & Oje, K. (2011). Development of model equations for selecting optimum parameters for dry process of shea butter extraction. Journal of Cereals and Oilseeds, 2(4), 47–56.

Oniya, O. O., Oyelade, J. O., Ogunkunle, O., & Idowu, D. O. (2017). Optimization of Solvent Extraction of Oil from Sandbox Kernels (Hura Crepitans L.) by a Response Surface Method. Energy and Policy Research, 4(1), 36–43. doi: 10.1080/23815639.2017.1324332

Singleton, V. L., & Rossi, J. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16, 144–158.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Udemgba Chinonso Stanley, Amarachi Anyawu Solace, Amaefule Excel Obumneme, Odoemelam Patience Ogechi, Odo Godfrey Ifeanyi, Okam Chukwu Emmanuel, Nnaemeka Nwachuckwu Chukwudi, Sandra Ijeoma Izuchukwu, Iheanacho Eberechi Clement, Ogbonna Chiemezuo Chinedu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.