Biosorption of Chromium (II) Ion from Textile Effluent Using Watermelon Shell-Activated Carbon

Emmanuel Chukwu Okam, Godfrey Ifeanyi Odo, Chinweikpe Kalu Uduma, Gift Uzunma Ijioma, Bernard I. Okolo


Watermelon Shell, an agricultural waste, was employed for the adsorptive removal of chromium (II) ion Cr2+ from textile effluent. This study analysed the adsorbent's active sites and morphological structures using FT-IR, SEM, XRD, and XRF. The independent variables' effect, contact time, adsorbent dosage, and pH were predicted using Response Surface Methodology (RSM) for chromium adsorption onto Watermelon Shell Activated Carbon (WSAC). The experimental results indicated that NaOH activation effectively improved WSAC's adsorption capacity. The maximum adsorption capacity was 54.53 %, with an adsorbent dosage of 0.6 g/l, pH of 6.0, and agitation time of 40 min. The high correlation coefficient (R2=0.978) between the model and the experimental data showed that the model predicted the removal of Cr2+ from textile effluent using Watermelon Shell Activated Carbon efficiently.


Activated Carbon; Chromium Adsorption; Heavy Metals; Adsorption; Watermelon Shell; Textile Effluent; Carbonization

Full Text:



Tilley, E., Ulrich, L., Lüthi, C., Reymond, Ph., Zurbrügg, C. (2016). Compendium of Sanitation Systems and Technologies (2nd ed.). Duebendorf: Swiss Federal Institute of Aquatic Science and Technology.

Mwangi, I. W., Ngila, J. C., & Okonkwo, J. O. (2012). A comparative study of modified and unmodified maize tassels for removal of selected trace metals in contaminated water. Toxicological & Environmental Chemistry, 94(1), 20–39. doi: 10.1080/02772248.2011.638636

Yu, J.-G., Zhao, X.-H., Yu, L.-Y., Jiao, F.-P., Jiang, J.-H., & Chen, X.-Q. (2013). Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. Journal of Radioanalytical and Nuclear Chemistry, 299(3), 1155–1163. doi: 10.1007/s10967-013-2818-y

Monachese, M., Burton, J. P., & Reid, G. (2012). Bioremediation and Tolerance of Humans to Heavy Metals through Microbial Processes: a Potential Role for Probiotics? Applied and Environmental Microbiology, 78(18), 6397–6404. doi: 10.1128/aem.01665-12

Fenta, M. M. (2014). Heavy Metals Concentration in Effluents of Textile Industry, Tikur Wuha River and Milk of Cows Watering on this Water Source, Hawassa, Southern Ethiopia. Research Journal of Environmental Sciences, 8(8), 422–434. doi: 10.3923/rjes.2014.422.434

Kannan, V., Ramesh, R., & Sasikumar, C. (2005). Study on ground water characteristics and the effects of discharged effluents from textile units at Karur District. Journal of environmental biology, 26(2), 269–272.

Halimoon, N., & Yin, R. (2010). Removal of Heavy Metals from Textile Wastewater using Zeolite. Retrieved from

Mathur, N., Bhatnagar, P., & Bakre, P. (2005). Assessing mutagenicity of textile dyes from Pali (Rajasthan) using ames bioassay. Applied Ecology and Environmental Research, 4(1), 111–118.

WHO. (2013). Lead poisoning and health. Retrieved June 1, 2022, from

Lingamdinne, L. P., Koduru, J. R., Jyothi, R. K., Chang, Y.-Y., & Yang, J.-K. (2015). Factors affect on bioremediation of Co(II) and Pb(II) ontoLonicera japonicaflowers powder. Desalination and Water Treatment, 57(28), 13066–13080. doi: 10.1080/19443994.2015.1055813

Fatima, T., Nadeem, R., Masood, A., Saeed, R., & Ashraf, M. (2013). Sorption of lead by chemically modified rice bran. International Journal of Environmental Science and Technology, 10(6), 1255–1264. doi: 10.1007/s13762-013-0228-x

Mihajlović, M. T., Lazarević, S. S., Janković-Častvan, I. M., Kovač, J., Jokić, B. M., Janaćković, D. T., & Petrović, R. D. (2014). Kinetics, thermodynamics, and structural investigations on the removal of Pb2+, Cd2+, and Zn2+ from multicomponent solutions onto natural and Fe(III)-modified zeolites. Clean Technologies and Environmental Policy, 17(2), 407–419. doi: 10.1007/s10098-014-0794-8

Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. doi: 10.1016/j.biotechadv.2008.11.002

Malik, R., Ramteke, D. S., Wate, S. R. (2006). Physico-chemical and surface characterization of adsorbent prepared from groundnut shell by ZnCl 2 activation and its ability to adsorb colour. Indian Journal of Chemical Technology, 13(4), 319–328.

Gavrilescu, M. (2004). Removal of Heavy Metals from the Environment by Biosorption. Engineering in Life Sciences, 4(3), 219–232. doi: 10.1002/elsc.200420026

Olorundare, O. F., Krause, R. W. M., Okonkwo, J. O., & Mamba, B. B. (2012). Potential application of activated carbon from maize tassel for the removal of heavy metals in water. Physics and Chemistry of the Earth, Parts A/B/C, 50–52, 104–110. doi: 10.1016/j.pce.2012.06.001

Moyo, M., & Chikazaza, L. (2013). Bioremediation of Lead(II) from Polluted Wastewaters Employing Sulphuric Acid Treated Maize Tassel Biomass. American Journal of Analytical Chemistry, 04(12), 689–695. doi: 10.4236/ajac.2013.412083

Patil, B. S., Jayaprakasha, G. K., Chidambara Murthy, K. N., & Vikram, A. (2009). Bioactive Compounds: Historical Perspectives, Opportunities, and Challenges. Journal of Agricultural and Food Chemistry, 57(18), 8142–8160. doi: 10.1021/jf9000132

Reddy, L. V., Reddy, Y. H. K., Reddy, L. P. A., & Reddy, O. V. S. (2008). Wine production by novel yeast biocatalyst prepared by immobilization on watermelon (Citrullus vulgaris) rind pieces and characterization of volatile compounds. Process Biochemistry, 43(7), 748–752. doi: 10.1016/j.procbio.2008.02.020

Mort, A., Zheng, Y., Qiu, F., Nimtz, M., & Bell-Eunice, G. (2008). Structure of xylogalacturonan fragments from watermelon cell-wall pectin. Endopolygalacturonase can accommodate a xylosyl residue on the galacturonic acid just following the hydrolysis site. Carbohydrate Research, 343(7), 1212–1221. doi: 10.1016/j.carres.2008.03.021

Idris, S., Iyaka, Y. A., Ndamitso, M. M., Mohammed, E. B., & Umar, M. T. (2012). Evaluation of Kinetic Models of Copper and Lead Uptake from Dye Wastewater by Activated Pride of Barbados Shell. American Journal of Chemistry, 1(2), 47–51. doi: 10.5923/j.chemistry.20110102.10

Ye, J., Zhang, P., Hoffmann, E., Zeng, G., Tang, Y., Dresely, J., & Liu, Y. (2014). Comparison of Response Surface Methodology and Artificial Neural Network in Optimization and Prediction of Acid Activation of Bauxsol for Phosphorus Adsorption. Water, Air, & Soil Pollution, 225(12). doi: 10.1007/s11270-014-2225-1

Kiran, B., Kaushik, A., & Kaushik, C. P. (2007). Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chemical Engineering Journal, 126(2–3), 147–153. doi: 10.1016/j.cej.2006.09.002

Othman, N., Kueh, Y. S., Azizul-Rahman, F. H., & Hamdan, R. (2014). Watermelon Rind: A Potential Adsorbent for Zinc Removal. Applied Mechanics and Materials, 680, 146–149. doi: 10.4028/

Zarei, A., Bazrafshan, E., Khaksefidi, R., & Alizadeh, M. (2013). The Evaluation of Removal Efficiency of Phenol from Aqueous Solutions using Moringa Peregrina Tree Shell Ash. Iranian Journal of Health Sciences, 1(1), 65–74. doi: 10.18869/acadpub.jhs.1.1.65

Marsh, H., & Rodriguez-Reinoso, F. (2006). Activated Carbon. N. d. : Elsevier Science. doi: 10.1016/b978-0-08-044463-5.x5013-4

Ketcha, J., Dina, D., Ngomo, H., & Ndi, N. (2012). Preparation and Characterization of Activated Carbons Obtained from Maize Cobs by Zinc Chloride Activation. America Chemical Science Journal, 2(4), 136-160.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2022 Emmanuel Chukwu Okam, Godfrey Ifeanyi Odo, Chinweikpe Kalu Uduma, Gift Uzunma Ijioma, Bernard I. Okolo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.