Finite Element Analysis of Continuous Plates Using a High-Performance Programming Language (MATLAB)
Abstract
Keywords
Full Text:
PDFReferences
Belounar, L., & Guenfoud, M. (2005). A new rectangular finite element based on the strain approach for plate bending. Thin-Walled Structures, 43(1), 47–63. doi: 10.1016/j.tws.2004.08.003
Bernoulli, J. (1789). Essai theorique sur les vibrations de plaques elastiques rectangularies et libers. Novi Commentari Acad Petropolit, 5, 197–219
Cauchy, A. (2009). Oeuvres complétes: Sur l'équilibre et le mouvement d'une plaque solide. doi: 10.1017/CBO9780511702679.014
Cheung, M. S., Chidiac, S. E., & Li, W. (1996). Finite Strip Analysis of Bridges. London: CRC Press.
Clebsch, A., Flamant, A. A., & de Saint-Venant, A. C. (1883). Théorie de l'élasticité des corps solides. Paris: Dunod.
Clough, R. W. (1960). The Finite Element Method in Plane Stress Analysis. Retrieved from https://www.semanticscholar.org/paper/The-Finite-Element-Method-in-Plane-Stress-Analysis-Clough/035536cf1b0157b3cc7a6a19ed1b66638b388553
Cole, V. (2006, January 25). A Critical History of Computer Graphics and Animation. Retrieved from https://www.engadget.com/2006-01-25-a-critical-history-of-computer-graphics-and-animation.html
Cook, R. D. (2002). Concepts and applications of finite element analysis. New York: Wiley.
Courant, R. (1943). Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society, 49, 1–23.
Dawe, D. J. (1984). Matrix and finite element displacement analysis of structures. Oxford: Claredon Press.
Düster, A., & Rank, E. (2001). The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity. Computer Methods in Applied Mechanics and Engineering, 190(15–17), 1925–1935. doi: 10.1016/s0045-7825(00)00215-2
Euler, L. (1776). De motu vibratorio tympanorum. Retrieved from https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=1301&context=euler-works
Germain, S. (1826). Remarques sur la nature, les bornes et l'étendue de la question des surfaces élastiques et équation générale de ces surfaces. Paris.
Han, J.-G., Ren, W.-X., & Huang, Y. (2007). A wavelet-based stochastic finite element method of thin plate bending. Applied Mathematical Modelling, 31(2), 181–193. doi: 10.1016/j.apm.2005.08.020
Hastings, J. K., Judes, M. A., & Brauer, J. R. (1985). Accuracy and Economy of Finite Element Magnetic Analysis. 33rd Annual National Relay Conference.
Hrennikoff, A. (1941). Solution of Problems of Elasticity by the Framework Method. Journal of Applied Mechanics, 8(4), A169–A175. doi: 10.1115/1.4009129
Kelvin, W. T., & Tait, P. G. (2013). Treatise on Natural Philosophy (Vol. 1). Oxford: Clarendon Press.
Kirchhoff, G. (1985). Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal Für Die Reine Und Angewandte Mathematik (Crelles Journal), 40, 51–88. doi: 10.1515/crll.1850.40.51
Kreyszig, E. (2011). Advanced Engineering Mathematics (10th ed.). Retrieved from https://www.bau.edu.jo/UserPortal/UserProfile/PostsAttach/59003_3812_1.pdf
Krishnamoorthy, C. S. (2011). Finite element analysis theory and programming (2nd ed.). New Delhi: Tata McGraw Hill Education Private Limited.
Levy, M. (1877). Mémoire sur la théorie des plaques élastiques planes. Journal de mathématiques pures et appliquées, 3(3), 219–306.
Lim, G. T., & Reddy, J. N. (2003). On canonical bending relationships for plates. International Journal of Solids and Structures, 40(12), 3039–3067. doi: 10.1016/s0020-7683(03)00084-2
Mathew, J., Ma, L., Tan, A., Weijnen, M., & Lee, J. (Eds.). (2012). Engineering Asset Management and Infrastructure Sustainability. doi: 10.1007/978-0-85729-493-7
Melosh, R. J. (1963). Basis for derivation of matrices for the direct stiffness method. AIAA Journal, 1(7), 1631–1637. doi: 10.2514/3.1869
Nwagozie, I. L. (2008, January). Finite Element Modelling Of Engineering Systems. Retrieved from https://www.researchgate.net/publication/297739827_FINITE_ELEMENT_MODELLING_OF_ENGINEERING_SYSTEMS_With_Emphasis_in_Water_Resources
Poisson, S. D. (1828). Mémoire sur l'équilibre et le mouvement des corps élastiques. N. d.
Reddy, J. N. (2006). Theory and Analysis of Elastic Plates and Shells. doi: 10.1201/9780849384165
Reissner, E., & Stein, M. (1951). Torsion and transverse bending of cantilever plates. Retrieved from https://ntrs.nasa.gov/citations/19930090894
Rockey, K. C. (1974). The Finite Element method: A Basic Introduction. London: Collins professional and Technical Book.
Ross, C. (1996). Finite Element Techniques in Structural Mechanics. London: Woodhead Publishing.
Saibel, E., & Tadjbakhsh, I. (1960). Large deflections of circular plates under uniform and concentrated central loads. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP, 11(6), 496–503. doi: 10.1007/bf01595401
Segerlind, L. (1985). Applied Finite Element Analysis (2nd ed.). New York: Wiley.
Semie, A. G. (2010, June). Numerical Modelling of Thin Plates using the Finite Element Method. Retrieved from http://etd.aau.edu.et/bitstream/handle/123456789/7199/Addisu%20Gezahegn.pdf?sequence=1&isAllowed=y
Shames, I. H., & Dym, C. L. (2017). Energy and Finite Element Methods in Structural Mechanics. doi: 10.1201/9780203757567
Shudhir, N. (2012). Plate Bending Analaysis Using Finite Element Method. Retrieved from http://ethesis.nitrkl.ac.in/3303/1/108ME015.pdf
Speare, P. R. S., & Kemp, K. O. (1977). A simplified reissner theory for plate bending. International Journal of Solids and Structures, 13(11), 1073–1079. doi: 10.1016/0020-7683(77)90077-4
Strang, G., & Fix, G. (2008). An Analysis of the Finite Element Method (2nd ed.). Cambridge: Wellesley-Cambridge Press.
Szabó, B., & Actis, R. (2011). Simulation governance: New technical requirements for software tools in computational solid mechanics. Retrieved from https://www3.nd.edu/~powers/vv.presentations/szabo.pdf
Thompson, E. G. (2004). Introduction to the Finite Element Method: Theory, Programming and Applications. New York: Wiley.
Timoshenko, S. P., & Woinowsky-Kerieger, S. (1959). Theory of Plates and Shells (2nd ed.). New York: McGraw-Hill Book Co.
Topping, B. H. V. (Ed.). (2003). Developments in Structural Engineering. doi: 10.1201/9781482298567
Turner, M. J., Clough, R. W., Martin, H. C., & Topp, L. J. (1956). Stiffness and Deflection Analysis of Complex Structures. Journal of the Aeronautical Sciences, 23(9), 805–823. doi: 10.2514/8.3664
Ventsel, E., & Krauthammer, T. (2001). Thin Plates and Shells. doi: 10.1201/9780203908723
Williams, M. S., & Todd. J. D. (2000). Structures: Theory and analysis. London: Red Globe Press.
Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The finite element method: its basis and fundamentals (7th ed.). Oxford: Butterworth-Heinemann.Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Excel Obumneme Amaefule, Owen Chukwuebuka Abuka, Nnaemeka Chukwudi Nwachukwu, Chukwuebuka Oscar Nnadi, Chibueze Nelson Ogbonna, Habeeb Keji Adeyemo, Meshack Ibeamaka Ogundu, Sunday Okechukwu, Don-Ugbaga Chinomso, Gregory Ezeokpube

This work is licensed under a Creative Commons Attribution 4.0 International License.