Phytochemical Screening, Acute Toxicity and Analgesic Activity of Extracts From Newbouldia laevis in Laboratory Animals

Odo Peter, Odo Ekene, Ihemadu Chiaguguom, Felix Grace, Nwaubani Daniel, Amako Ngozi, Omekara Israel


Extraction was by cold maceration using methanol. The extract was concentrated in vacuo to yield a brown solid of 120.191 g. The crude methanol extract was partitioned into n-hexane 0.1 g, dichloromethane 2.5 g, ethylacetate 4.0 g, and methanol 10.0 g fractions via coarse chromatography. Secondary metabolites identified; 21.73±0.36% alkaloids, 40.78±0.27% flavonoids, 15.99±0.044% saponins, 6.088±0.06% tannins, 3.086±0.03% terpenoids and 12.13±0.01% Cardiac Glycosides. Acute toxicity test showed no death in the rats administered with low dose (1000 mg/kg) and high dose (6000 mg/kg). Analgesic activities of crude methanol extract and fractions showed that at a low dose of 4000 mg/kg of the extract and the fractions have percentage inhibition of pains as methanol crude (63.48±4.62), methanol fraction (79.14±7.39), dichloromethane fraction (60.79±6.69), ethylacetate fraction (23.26±9.75) and n-hexane fraction (64.82±9.75). At a high dose of 8000 mg/kg, the percentage inhibition of pain was 5200±2.00, 71.87±7.04, 80.31±6.20, 45.61±12.60 and 43.87±8.13. Statistical analysis; P>0.05 confidence level, methanol fraction recorded highest analgesic activities while ethylacetate fraction had least.


Alkaloids; Cardiac glycosides; Flavonoids; Pains; Rats

Full Text:



Akunyili, D. (2000). Anticonvulsant Activity of the Ethanolic extract of Newbouldia laevis. Proceedings of the 2nd NAAP Scientific Conference, Zaria, 155–158.

Igboasoiyi, A., Attih, E., & Egeolu, A. (2017). Antiplasmodial activity of the ethanol leaf extract of Newbouldia leavis. World Journal of Pharmacy and Pharmaceutical Sciences, 2(4), 80–85. doi: 10.20959/wjpps201704-8716

Burtis, C. A., Tietz, N. W., Ashwood, E. R., & Bruns, D. E. (2008). Fundamentals of clinical chemistry. Philadelphia: Saunders.

Oliver-Bever, B. (2009). Medicinal plants in tropical West Africa. Cambridge: Cambridge University Press.

Bruneton, J. (1995). Pharmacognosy, phytochemistry, medicinal plants. Andover: Intercept / Paris: Lavoisier.

Alves, R., & Rosa, I. (2007). Biodiversity, traditional medicine and public health: Where do they meet? Journal of Ethnobiology and Ethnomedicine, 3(14), 1–9. doi: 10.1186/1746-4269-3-14

Bafor, E., & Sanni, U. (2009). Uterine contractile effects of the aqueous and ethanol leaf extracts ofNewbouldia Laevis(Bignoniaceae)in vitro. Indian Journal of Pharmaceutical Sciences, 71(2), 124–126. doi: 10.4103/0250-474x.54274

Sofowora, A. (2012). Medicinal plants and Traditional medicine in Africa. Ibadan: Spectrum Books.

Thomson Healthcare. (2008). Micromedex Healthcare series (intranet database) (vol. 135). Green Wood Village.

Stierle, A., Strobel, G., Stierle, D. (1993). Taxol and Taxane production by Taxomyces and reane, an endophytic fungus of pacific yew. Science, 260(5105), 214–216. doi: 10.1126/science.8097061

Stolerman, I. P., & Price, L. H. (2020). Encyclopedia of Psychopharmacology. Berlin: Springer Berlin Heidelberg.

Liu, R. (2004). Potential Synergy of Phytochemicals in cancer prevention: mechanism of action. Journal of Nutrition, 134, 34795–34855. doi: 10.1093/jn/134.12.3479s

Evans, W. C., Trease, G. E., & Evans, D. (2002). Trease and Evans' pharmacognosy. Edinburgh: WB Saunders.

Saeed, M. K., Deng, Y., & Dai, R. (2008). Attenuation of Biochemical Parameters in Streptozotocin-induced Diabetic Rats by Oral Administration of Extracts and Fractions of Cephalotaxus sinensis. Journal of clinical biochemistry and nutrition, 42(1), 21–28.

Harbone, J. B. (1984). Phytochemical Methods. London: Champman and Hil.

Ejikeme, C. M., Ezeonu, C. S., & Eboatu, A. N. (2014). Determination of physical and phytochemical constituents of some tropical timbers indigenous to Niger Delta Area of Nigera. European Scientific Journal, 10(18), 247–270.

Peri, C., & Pompei, C. (1971). Estimation of different phenolic groups in vegetable extracts. Phytochemmistry, 10(9): 2187–2189. doi: 10.1016/s0031-9422(00)97216-9

Indumathi, C. G., Duragadevi, G., Nithyavani, S., & Gayathri, P. (2014). Estimation of terpenoid content and its antimicrobial property in Enicostemma litorrale. International Journal of ChemTech Research, 6(9), 4264–4267.

Lorke, D. (1983). A new approach to practical acute toxicity testing. Archives of Toxicology, 54(4), 275–285. doi: 10.1007/bf01234480

OECD. (2002). Test No. 423: Acute oral toxicity – Acute Toxic Class Method. OECD Guidelines for the Testing of Chemicals, Section 4. doi: 10.1787/9789264071001-en

Cohen, P. J., Wylie, W. D., Churchill-Davidson, H. C., & Healy, T. E. J. (1995). A practice of anaesthesia. Philadelphia: Saunders.

Senchina, D., Hallam, J., Kohut, M., Nguyen, N., Perera, M. (2004). Alkaloids and athlete immune function: Caffeine, theophylline, gingerol, ephedrine, and their congeners. Exercise Immunology Review, 20, 68–93.

Miller, A. (1996). Antioxidant flavonoids: Structure, function and chemical usage. Alternative Medicine Review, 1(2), 103–111.

Nakayama, M., Suzuki, K., Toda, M., Okubo,S., Hara, Y., & Shimamura, T. (1993). Inhibition of the infectivity of influenza virus by tea polyphenol. Antviral Research, 21(4), 289–299. doi: 10.1016/0166-3542(93)90008-7

Galleano, M., Calabro, V., Prince, P. D., Litterio, M. C., Piotrkowski, B., Vazquez-Prieto, M. A., … Fraga, C. G. (2012). Flavonoids and metabolic syndrome. Annals of the New York Academy of Sciences, 1259(1), 87–94. doi: 10.1111/j.1749-6632.2012.06511.x

Yoshikawa, M., Murakami, T., Kishi, A., Kageura, T., & Matsuda, H. (2001). Medicinal Flowers. III. Marigold. (1): Hypoglycemic, Gastric Emptying Inhibitory, and Gastroprotective Principles and New Oleanane-Type Triterpene Oligoglycosides, Calendasaponins A, B, C, and D, from Egyptian Calendula officinalis. Chemical and Pharmaceutical Bulletin, 49(7), 863–870. doi: 10.1248/cpb.49.863

Cai, J., Liu, M., Wang, Z., & Ju, Y. (2002). Apoptosis Induced by Dioscin in Hela Cells. Biological and Pharmaceutical Bulletin, 25(2), 193–196. doi: 10.1248/bpb.25.193

Apers, S., Baronikova, S., Sindambiwe, J.-B., Witvrouw, M., Clercq, E., Berghe, D., … Pieters, L. (2001). Antiviral, Haemolytic and Molluscicidal Activities of Triterpenoid Saponins from Maesa lanceolata: Establishment of Structure-Activity Relationships. Planta Medica, 67(06), 528–532. doi: 10.1055/s-2001-16489

Yang, C.-R., Zhang, Y., Jacob, M. R., Khan, S. I., Zhang, Y.-J., & Li, X.-C. (2006). Antifungal Activity of C-27 Steroidal Saponins. Antimicrobial Agents and Chemotherapy, 50(5), 1710–1714. doi: 10.1128/aac.50.5.1710-1714.2006

Tijani, A., Ndukwe, I. G., & Ayo, R. G. (2011). Studies on antibacterial activity of adenium obesum (Apocynaceae) stembark. Continental Journal of Microbiology, 5(1), 12–17.

Bachran, C., Bachran, S., Sutherland, M., Bachran, D., & Fuchs, H. (2008). Saponins in Tumor Therapy. Mini-Reviews in Medicinal Chemistry, 8(6), 575–584. doi: 10.2174/138955708784534445

Sadeghi, M., Zolfaghari, B., Senatore, M., & Lanzotti, V. (2013). Spirostane, furostane and cholestane saponins from Persian leek with antifungal activity. Food Chemistry, 141(2), 1512–1521. doi: 10.1016/j.foodchem.2013.04.009

Leon, M., Johanna, M. (2018). The Synopsis of biological and pharmacological events in Saponins. International Journal of Latest Engineering Science, 1(2), 1–5.

Parejo, I., Viladomat, F., Bastida, J., Rosas-Romero, A., Flerlage, N., Burillo, J., & Codina, C. (2002). Comparison between the Radical Scavenging Activity and Antioxidant Activity of Six Distilled and Nondistilled Mediterranean Herbs and Aromatic Plants. Journal of Agricultural and Food Chemistry, 50(23), 6882–6890. doi: 10.1021/jf020540a

Ashok, P., Upadhyaya, K. (2012). Tannins as astrigent. Journal of pharmacognosy and phytochemistry, 1(3), 45–50.

Hemingway, R. W., Karchesy, J. J., & Branham, S. J. (Eds.). (1989). Chemistry and Significance of Condensed Tannins. doi: 10.1007/978-1-4684-7511-1

Ububelen, A. (2003). Cardioactive and antibacterial terpenoids from some salvia species. Phytochemistry, 63, 395–399. doi: 10.1016/s0031-9422(03)00225-5

Patel, S. (2016). Plant-derived cardiac glycosides: role in heart ailments and cancer management. Biomedicine and Pharmacotherapy, 84, 1036–1041. doi: 10.1016/j.biopha.2016.10.030

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2022 Odo Peter, Odo Ekene, Ihemadu Chiaguguom, Felix Grace, Nwaubani Daniel, Amako Ngozi, Omekara Israel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.