Screening of Soil Fungi for Cellulase Production using Carboxymethyl Cellulose Media

Abdulrahman Ahmad, Mahmud Yerima Iliyasu, Ahmad Jibrin Na'Allah, Bashir Ismail Olawale, Abubakar Madika, Ahmed Faruk Umar

Abstract

The research was conducted to isolate soil fungi and screen them for cellulase production using the zone of hydrolysis technique. Several fungi were isolated and characterised from soil environments of different locations using conventional microbiological methods. A total of six isolates were confirmed to be Penicillium chrysogenum, Emericella rogulosus, Aspergillus terreus, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, all coded as BG1, BG2, BG3, BG4, BG5 and BG6, respectively. Fungal isolate BG5 has the highest percentage of occurrence (34.30 %), followed by SBG3 (22.86 %). The isolates were screened for cellulase production using the carboxymethyl cellulose (CMC) agar plate method. All the fungal isolates demonstrated cellulase production ability, with fungal isolates BG5 (18 mm) and BG3 (15 mm) having the highest diameter of zone of cellulose hydrolysis. The research reveals the potentiality of using locally isolated soil fungi for cellulase production.



Keywords


cellulase; soil fungi; carboxymethyl cellulose; aspergillus; penicillium

Full Text:

PDF


References


Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577. doi: 10.1128/mmbr.66.3.506-577.2002

Zhu, Z., Sathitsuksanoh, N., & Percival Zhang, Y.-H. (2009). Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. The Analyst, 134(11), 2267. doi: 10.1039/b906065k

Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases – production, applications and challenges. Journal of Science and Industrial Research, 64, 832–844.

Holker, U., Hofer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186. doi: 10.1007/s00253-003-1504-3

Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13–18. doi: 10.1016/j.bej.2008.10.019

Elisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T., & Agathos, S. N. (2008). Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology and Biotechnology, 25(2), 331–339. doi: 10.1007/s11274-008-9897-x

Mathew, G. M., Sukumaran, R. K., Singhania, R. R., & Ashok, P. (2008). Progress in research on fungal cellulases for lignocellulose degradation. Journal of Scientific and Industrial Research, 67(11), 898–907.

Coughlan, M. P., Moloney, A. P., McCrae, S. I., & Wood, T. M. (1987). Cross-synergistic interactions between components of the cellulase systems of Talaromyces emersonii, Fusarium solani, Penicillium funiculosum and Trichoderma koningii. Biochemical Society Transactions, 15(2), 263–264. doi: 10.1042/bst0150263

Khandelwal, M., & Windle, A. H. (2013). Hierarchical Organisation in the Most Abundant Biopolymer –Cellulose. MRS Proceedings, 1504. doi: 10.1557/opl.2013.379

Holtzapple, M. T. (2003). Cellulose. In B. Caballero, Encyclopedia of Food Sciences and Nutrition (2nd ed., pp. 998–107). Oxford: Academic Press.

Aravamudhan, A., Ramos, D. M., Nada, A. A., & Kumbar, S. G. (2014). Natural Polymers. Natural and Synthetic Biomedical Polymers, 67–89. doi: 10.1016/b978-0-12-396983-5.00004-1

Rose, M., & Palkovits, R. (2011). Cellulose-Based Sustainable Polymers: State of the Art and Future Trends. Macromolecular Rapid Communications, 32(17), 1299–1311. doi: 10.1002/marc.201100230

Aunina, Z., Bazbauers, G., & Valters, K. (2010). Feasibility of Bioethanol Production From Lignocellulosic Biomass. Scientific Journal of Riga Technical University. Environmental and Climate Technologies, 4(-1), 11–15. doi: 10.2478/v10145-010-0011-x

Ingham, E. R. (2009). Soil Biology. Retrieved from https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/biology/

Sun, J.-M., Irzykowski, W., Jedryczka, M., & Han, F.-X. (2005). Analysis of the Genetic Structure of Sclerotinia sclerotiorum (Lib.) de Bary Populations from Different Regions and Host Plants by Random Amplified Polymorphic DNA Markers. Journal of Integrative Plant Biology, 47(4), 385–395. doi: 10.1111/j.1744-7909.2005.00077.x

Žifčáková, L., Větrovský, T., Howe, A., & Baldrian, P. (2015). Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environmental Microbiology, 18(1), 288–301. doi: 10.1111/1462-2920.13026

Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32(1), 78–91. doi: 10.1016/s0141-0229(02)00245-4

López-Bucio, J., Pelagio-Flores, R., & Herrera-Estrella, A. (2015). Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 196, 109–123. doi: 10.1016/j.scienta.2015.08.043

Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., … Colla, G. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91–108. doi: 10.1016/j.scienta.2015.09.002

Francis, F., Sabu, A., Nampoothiri, K. M., Ramachandran, S., Ghosh, S., Szakacs, G., & Pandey, A. (2003). Use of response surface methodology for optimising process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal, 15(2), 107–115. doi: 10.1016/s1369-703x(02)00192-4

Wardle, D. A. (2002). Communities and Ecosystems: Linking Aboveground and Belowground Components. Princeton: Princeton University Press.

Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 111(14), 5266–5270. doi: 10.1073/pnas.1320054111

Hannula, S. E., Morriën, E., de Hollander, M., van der Putten, W. H., van Veen, J. A., & de Boer, W. (2017). Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. The ISME Journal, 11(10), 2294–2304. doi: 10.1038/ismej.2017.90

Jayne, B., & Quigley, M. (2013). Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza, 24(2), 109–119. doi: 10.1007/s00572-013-0515-x

Baum, C., El-Tohamy, W., & Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae, 187, 131–141. doi: 10.1016/j.scienta.2015.03.002

El Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterisation of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt. The Plant Pathology Journal, 31(1), 50–60. doi: 10.5423/ppj.oa.09.2014.0087

Treseder, K. K., & Lennon, J. T. (2015). Fungal Traits That Drive Ecosystem Dynamics on Land. Microbiology and Molecular Biology Reviews, 79(2), 243–262. doi: 10.1128/mmbr.00001-15

Magdoff, F., & Van Es, H. (2009). Building Soils for Better Crops (4th ed.). Retrieved from https://www.sare.org/wp-content/uploads/Building-Soils-for-Better-Crops.pdf

Lowenfels, J., & Lewis, W. (2010). Teaming with Microbes. Portland: Timber Press.

Sivakumaran, S. (2014). Isolation of cellullolytic fungi and their degredation on cellulosic agricultural wastes. Journal of Academia and Industrial Research, 2(8), 458–463.

Reddy, P. L., Babu, B.., Radhaiah, A., & Sreeramulu, A. (2014). Screening, Identification and isolation of cellulolytic fungi from soils of Chittoor district, India. International Journal of current Microbiology and Applied Sciences, 3(7), 761–771.

Mrudula, S., & Murugammal, R. (2011). Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 42(3), 1119–1127.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Abdulrahman Ahmad, Mahmud Yerima Iliyasu, Ahmad Jibrin Na'Allah, Bashir Ismail Olawale, Abubakar Madika, Ahmed Faruk Umar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.