Production of Bioethanol by Co-Culture of Aspergillus niger and Saccharomyces cerevisiae using Watermelon Peels as Substrate

Bashir Ismail Olawale, Mahmud Yerima Iliyasu, Bishir Musa, Ahmad Abdulrahman, Ahmed Faruk Umar


Bioethanol production from lignocellulosic biomass as an alternative fuel source has received considerable attention from researchers worldwide. Bioethanol was produced from watermelon peels by fermentation in the current work, using Aspergillus niger and Saccharomyces cerevisiae co-cultures isolated from soil and local beverage (kunun zaki), respectively. The isolates were characterised both macroscopically and microscopically. While starch hydrolysis test was carried out for the mould isolates, thermotolerance, glucose and ethanol tolerance tests were used to identify the yeast isolates. According to standard procedures described by the Association of Official Analytical Chemists (AOAC), Proximate analyses were carried out on the watermelon peels. The ethanol yield was determined using the specific gravity method. Isolate BGD of the moulds had the highest (40 mm) zone of clearance on starch agar. The identified yeasts showed the best growth at a maximum of 35 °C while tolerating up to 50% wt/v and 18% v/v of glucose and ethanol, respectively. The yeasts also fermented all the different sugars tested but lactose. The proximate composition of the substrate revealed low protein (3.5%) and ash contents (7.38%) but a remarkably high carbohydrate content of 79.22%. At optimal fermentation conditions (30 °C, pH 6.0, 4% g/L substrate, 200rpm and five (5) days fermentation period), the maximum ethanol yield produced by the co-culture of Aspergillus niger and Saccharomyces cerevisiae was 57 g/L. However, only 13.5 g/L and eight g/L were produced by individual cultures of A. niger and S. cerevisae, respectively. The bioethanol produced has a specific gravity of 0.994, miscible in water with a pleasant smell. This colourless liquid boils at a temperature of 78 °C with a pH of 3.02 and ignites at room temperature. It was concluded that watermelon peels are a suitable substrate for bioethanol production and was used successfully to produce an ethanol yield of 57 g/L by co-culture of A. niger and S. cerevisiae.


watermelon peels; lignocellulosic biomass; co-culture; Aspergillus niger; Saccharomyces cerevisiae; bioethanol

Full Text:



Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551–573. doi: 10.1016/j.pecs.2007.11.001

Pegkas, P. (2019). The impact of renewable and non-renewable energy consumption on economic growth: the case of Greece. International Journal of Sustainable Energy, 39(4), 380–395. doi: 10.1080/14786451.2019.1700261

Itelima, J., Onwuliri, F., Onwuliri, E., Onyimba, I., & Oforji, S. (2013). Bio-Ethanol Production from Banana, Plantain and Pineapple Peels by Simultaneous Saccharification and Fermentation Process. International Journal of Environmental Science and Development, 213–216. doi: 10.7763/ijesd.2013.v4.337

Franco-Duarte, R., Umek, L., Mendes, I., Castro, C. C., Fonseca, N., Martins, R., … Schuller, D. (2016). New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking. Food Chemistry, 211, 509–520. doi: 10.1016/j.foodchem.2016.05.080

U. N. Food and Agriculture Organization. (2016). FAO Production Yearbook. Rome.

Tressler, D., Joslyn, M. (1961). Fruit and vegetable juice processing technology (2nd ed.). Westport: AVI Publishing Co.

Kim, S., Kim, W., Lee, S., & Byun, S. (1984). Alcohol fermentation of Korean watermelon juice. Journal of the Korean Society of Agricultural Chemistry and Biotechnology, 27, 139–145.

McGovern, P. E., Zhang, J., Tang, J., Zhang, Z., Hall, G. R., Moreau, R. A., … Wang, C. (2004). Fermented beverages of pre- and proto-historic China. Proceedings of the National Academy of Sciences, 101(51), 17593–17598. doi: 10.1073/pnas.0407921102

Mabee, W. E. (n.d.). Policy Options to Support Biofuel Production. Advances in Biochemical Engineering/Biotechnology, 329–357. doi: 10.1007/10_2007_059

Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Ethanol Can Contribute to Energy and Environmental Goals. Science, 311(5760), 506–508. doi: 10.1126/science.1121416

Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–953. doi: 10.1007/s00253-006-0827-2

Carere, C., Sparling, R., Cicek, N., & Levin, D. (2008). Third Generation Biofuels via Direct Cellulose Fermentation. International Journal of Molecular Sciences, 9(7), 1342–1360. doi: 10.3390/ijms9071342

Wyman, C. (1996). Handbook on bioethanol: production and utilisation. Washington: Taylor & Francis.

Akin-Osana, B. C., Nzelibe, H. C., & Agbaji, A. S. (2008). Ethanol Production from Carica papaya (Pawpaw) Fruit Waste. Asian Journal of Biochemistry, 3(3), 188–193. doi: 10.3923/ajb.2008.188.193

Joshi, S., Dhopeshwarkar, R., Jadav, U., Jadav, R., D’Souza, L., & Dixit, J. (2001). Continuous ethanol production by fermentation of waste banana peels using flocculating yeast. Indian Journal of Chemical Technology, 40, 153–156.

Scully, S., & Orlygsson, J. (2014). Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria. Energies, 8(1), 1–30. doi: 10.3390/en8010001

Souza, P. M. de, & Magalhães, P. de O. e. (2010). Application of microbial α-amylase in industry - A review. Brazilian Journal of Microbiology, 41(4), 850–861. doi: 10.1590/s1517-83822010000400004

Subhadra, B., & Grinson-George. (2010). Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. Journal of the Science of Food and Agriculture, 91(1), 2–13. doi: 10.1002/jsfa.4207

Bhatia, L., Johri, S., & Ahmad, R. (2012). An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express, 2(1), 65. doi: 10.1186/2191-0855-2-65

Knudsen, S., Saadbye, P., Hansen, L. H., Collier, A., Jacobsen, B. L., Schlundt, J., & Karlström, O. H. (1995). Development and testing of improved suicide functions for biological containment of bacteria. Applied and Environmental Microbiology, 61(3), 985–991. doi: 10.1128/aem.61.3.985-991.1995

Verweij, P.E., Brandt, M.E., Murray, P.R., Baron, E.J., Jorgensen, J.H., Landry, M.L., & Pfaller, M.A. (2006). Aspergillus, Fusarium, and other opportunistic moniliaceous fungi. Retrieved from

Barnett, H. L., & Hunter, B. B. (2010). Illustrated genera of imperfect fungi. St. Paul: APS Press.

Ado, S., Olukotun, G., Ameh, J., & Yabaya, A. (2010). Bioconversion of cassava starch to ethanol in a simultaneous saccharification and fermentation process by co-cultures of Aspergillus niger and Saccharomyces cerevisiae. Science World Journal, 4(1). doi: 10.4314/swj.v4i1.51832

Guimarães, T. M., Moriel, D. G., Machado, I. P., Picheth, C. M. T. F., & Bonfim, T. M. B. (2006). Isolation and characterization of Saccharomyces cerevisiae strains of winery interest. Revista Brasileira de Ciências Farmacêuticas, 42(1), 119–126. doi: 10.1590/s1516-93322006000100013

Breisha, G. Z. (2010). Production of 16% ethanol from 35% sucrose. Biomass and Bioenergy, 34(8), 1243–1249. doi: 10.1016/j.biombioe.2010.03.017

Ameh, J., Okagbue, R., Ahmad, A. (1990). Isolation and characterisation of local yeast strains for ethanol production. Nigerian Journal of Technology Research, 1, 47–52.

Ajay, K., Sanat, R., Yashab, K., Harison, M., Jyotsna, K., Jane, C., Pradeep, K., & Pankaj, S. (2014). Bio-Ethanol Production from Banana peel by Simultaneous Saccharification and Fermentation Process using cocultures Aspergillus niger and Saccharomyces cerevisiae. International Journal of Current Microbiology and Applied Sciences, 3(5), 84–96.

Association of Official Analytical Chemists. (2010). Official Methods of Analysis. Arlington: The Association.

Byaruagaba-Bazirake, G., & Rensburg, P. (2013). Characterisation of banana wine fermented with recombinant wine yeast strains. American Journal of Food and Nutrition, 3(3), 105–116. doi: 10.5251/ajfn.2013.

Oyeleke, S., Dauda, B., Oyewole, O., Okoliegbe, I., & Ojebode, T. (2012). Production of Bioethanol from Cassava and Sweet Potato Peels. Advances in Environmental Biology, 6(1), 241–245.

Whelan, P. (1978). Essential principle of physics. London: John Murray.

Habib, M., Abdu, P., Kwanashie, C., Kabir, J., & Negedu, A. (2015). Isolation and identification of Aspergillus species from poultry feeds in Kaduna State, Nigeria. Microbiology Research International, 3(2), 27–32.

Omemu, A., Akpan, I., Bankole, M., & Teniola, O. (2005). Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. African Journal of Biotechnology, 4(1), 19–25.

Oyeleke, S., & Jibrin, N. (2009). Production of bioethanol from guinea corn husk and millet husk. African Journal of Microbiology Research, 3(4), 147–152.

Kassim, M. A., Kheang, L. S., Bakar, N. A., Aziz, A. A., & Som, R. M. (2011). Biothanol Production from Enzymatically Saccharified Empty Fruit Bunches Hydrolysate using Saccharomyces cerevisiae. Research Journal of Environmental Sciences, 5(6), 573–586. doi: 10.3923/rjes.2011.573.586

Reis, V. R., Bassi, A. P. G., Silva, J. C. G. da, & Ceccato-Antonini, S. R. (2013). Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation. Brazilian Journal of Microbiology, 44(4), 1121–1131. doi: 10.1590/s1517-83822014005000020

Andrietta, M., Andrietta, S., Steckelberg, C., & Stupiello, E. (2007). Bioethanol – Brazil, 30 years of Proalcool. International Sugar Journal, 109(1299), 195–200.

Kurtzman, C. P. (1983). Fungi-Sources of Food, Fuel, and Biochemicals. Mycologia, 75(2), 374–382. doi: 10.1080/00275514.1983.12021679

Osho, A. (2005). Ethanol and sugar tolerance of wine yeasts isolated from fermenting cashew apple juice. African Journal of Biotechnology, 4(7), 660–662. doi: 10.5897/ajb2005.000-3119

Patil, K. R., Rocha, I., Förster, J., & Nielsen, J. (2005). Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics, 6(1). doi: 10.1186/1471-2105-6-308

Sree, N. K., Sridhar, M., Suresh, K., Banat, I. M., & Rao, L. V. (2000). High alcohol production by repeated batch fermentation using an immobilized osmotolerant Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 24(3), 222–226. doi: 10.1038/sj.jim.2900807

Essien, J. P., Akpan, E. J., & Essien, E. P. (2005). Studies on mould growth and biomass production using waste banana peel. Bioresource Technology, 96(13), 1451–1456. doi: 10.1016/j.biortech.2004.12.004

Stenberg, K., Bollok, M.., Reczey, K., Galbe, M., & Zacchi, G. (2001). Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnology Bioengineering, 68(2), 204–210.

Wen, Z. (2004). Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresource Technology, 91(1), 31–39. doi: 10.1016/s0960-8524(03)00166-4

Verma, G., Nigam, P., Singh, D., & Chaudhary, K. (2000). Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresource Technology, 72(3), 261–266. doi: 10.1016/s0960-8524(99)00117-0

Jimoh, S. O., Ado, S. A., & Ameh, J. B. (2009). Effect of substrate concentration and agitation rate on ethanol production using sorghum bran as substrate. Biological and Environmental Science Journal for the Tropics, 6(1), 130–133.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2021 Bashir Ismail Olawale, Mahmud Yerima Iliyasu, Bishir Musa, Ahmad Abdulrahman, Ahmed Faruk Umar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.