Characteristics of TiO2 Compact Layer prepared for DSSC application

Nicholas Musila, Mathew Munji, Justus Simiyu, Eric Masika, Raphael Nyenge, Miriam Kineene


Dye-sensitized solar cells (DSSCs) offer an economically reliable and suitable alternative in moderating the challenges presented by the existing convectional photovoltaic cells. However, the efficiency of dye-sensitized solar cells has remained relatively low. For this reason, this research was aimed at studying the characteristics of TiO2 compact layer that can be applied in DSSCs as a way of improving efficiency. To achieve this, TiO2 compact layer was deposited on a conductive glass substrate by using Holmarc’s Spray Pyrolysis system, using Ultrasonic Spray Head and spraying in the vertical geometry. X-ray Diffraction studies revealed that TiO2 compact layer was of anatase phase and had tetragonal crystalline structure. Raman spectroscopy showed that the most intense peak appeared at 142 cm-1 due to the external vibration of the anatase structure. Hall Effect studies revealed that TiO2 compact layer has a high density of charge carriers’ value of 1.25 × 1019 cm-3 hence it can be used in DSSC applications.


Raman spectroscopy; compact layer; dye sensitized solar cell; morphology index; tetragonal crystalline structure; specific surface area; spray pyrolysis

Full Text:



Panchal, H., Shah, K. & Padharia, M., (2015). Dye Sensitized Solar Cells - An Alternative to Silicon Based Photovoltaic Technology. Retrieved from

Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729–15735. doi: 10.1073/pnas.0603395103

Omata, K., Kuwahara, S., Katayama, K., Qing, S., Toyoda, T., Lee, K.-M., & Wu, C.-G. (2015). The cause for the low efficiency of dye sensitized solar cells with a combination of ruthenium dyes and cobalt redox. Physical Chemistry Chemical Physics, 17(15), 10170–10175. doi: 10.1039/c4cp05981f

Sengupta, D., Das, P., Mondal, B., & Mukherjee, K. (2016). Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application – A review. Renewable and Sustainable Energy Reviews, 60, 356–376. doi: 10.1016/j.rser.2016.01.104

Kaur, R., Kim, K.-H., Paul, A. K., & Deep, A. (2016). Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks. Journal of Materials Chemistry A, 4(11), 3991–4002. doi: 10.1039/c5ta09668e

Antić, Ž., Krsmanović, R. M., Nikolić, M. G., Marinović-Cincović, M., Mitrić, M., Polizzi, S., & Dramićanin, M. D. (2012). Multisite luminescence of rare earth doped TiO2 anatase nanoparticles. Materials Chemistry and Physics, 135(2-3), 1064–1069. doi: 10.1016/j.matchemphys.2012.06.016

Weirich, T. ., Winterer, M., Seifried, S., Hahn, H., & Fuess, H. (2000). Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2. Ultramicroscopy, 81(3-4), 263–270. doi: 10.1016/s0304-3991(99)00189-8

Thirugnanasambandan, T., & Marimuthu, A. (2013). Titanium dioxide (TiO2) Nanoparticles - XRD Analyses – An Insight. Retrieved from

Wolfrom, R. (2012). Specifics on surface area. Retrieved from

Gupta, S. K., Desai, R., Jha, P. K., Sahoo, S., & Kirin, D. (2009, September 15). Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. Journal of Raman Spectroscopy. doi: 10.1002/jrs.2427

Nguu, J., Aduda, B., Nyongesa, F., Musembi, R., Njogu, S., & Mwathe, P. (2015). Electrical Characterization of Nano-TiO2/Nb2O5 Composite Thin Films Deposited Using Electrophoretic Deposition Technique. International Journal of Innovative Research in Advanced Engineering, 2, 192–198.

Nowotny, M. K., Sheppard, L. R., Bak, T., & Nowotny, J. (2008). Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. The Journal of Physical Chemistry C, 112(14), 5275–5300. doi: 10.1021/jp077275m

Tang, H., Levy, F. (1995). Electronic properties of anatase TiO2 investigated by electrical and optical measurements on single crystals and thin films. Retrieved from

Daniyan, A. A., Umoru, L. E., Fasasi, A. Y., Borode, J. O., Oluwasegun, K. M., & Olusunle, S. O. O. (2014). Electrical Properties of Nano-TiO2 Thin Film Using Spin Coating Method. Journal of Minerals and Materials Characterization and Engineering, 02(01), 15–20. doi: 10.4236/jmmce.2014.21003

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2018 Nicholas Musila, Mathew Munji, Justus Simiyu, Eric Masika, Raphael Nyenge, Miriam Kineene

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.