Measurement of Thermo-Radiation Characteristics of Spectral-Selective Materials for Space Structures Designs

Vitalij Babak, Leonid Vorobiov, Leonid Dekusha, Valentin Volkov, Zinaida Burova, Oleg Dekusha, Svitlana Kovtun

Abstract

The research demonstrates the relevance of creating the technologies of application of spectral-selective coatings of materials, intended for open space structures designs and the development of methods of control of their thermo-radiation characteristics. It is noted that under other equal conditions, the temperature of the surface of a structure in the vacuum of the outer space is determined by the ratio of the absorption coefficient of solar radiation to the emission factor of the surface.

The aim of the work is to demonstrate the perspective of calorimetric measurements of thermo-radiation characteristics without vacuuming the volume of the measuring chamber, substantiating the structure and characteristics of the equipment for these studies, carrying out an experimental verification of the method and equipment on the real samples of materials for space technology.

The possibility of using the calorimetric method for measuring the emission factor without vacuuming the volume of the measuring chamber, taking into account the heat transfer from the radiator to the surface of the sample through the air layer, is substantiated. The structure of the corresponding apparatus is recommended and the ratio of the geometric dimensions of the working chamber, in which the boundary distortion due to heat transfer through the air is insignificant, and the correction for conductive heat exchange can be easily calculated, is defined. The method of measurement and the description of the test stand on the basis of thermoelectric heat exchangers and absolute solar radiation receiver, which are intended to determine the absorption coefficient of solar radiation, are given.

A brief description of the technology of coating Al+TiO2 layered structure and the measured values of emission factor and absorption coefficient of samples with such coating is given. It is shown that the ratio of the absorption coefficient of solar radiation to the emission factor for a two-layer coating is significantly lower than the similar value obtained for its individual components. It is established that by changing the ratio of thickness of layers of Al and TiO2 it is possible to reduce the ratio of coefficients to the value that provides an acceptable level of temperature of the surface of the spacecraft.



Keywords


thermal radiation characteristics; multilayer thermoregulation coatings; calorimetric measurement methods; absorption coefficient of solar radiation; emission factor



References


1. Finckenor, M. M., & Dooling, D. (1999). Multilayer Insulation Material Guidelines. Alabama: Marshall Space Flight Center.

[Google Scholar]

2. Gilmore, D. (Ed.). (2002). Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies.

[Google Scholar] [CrossRef]

3. Freeland, R. E., Bilyeu, G. D., & Veal, G. R. (1996). Development of flight hardware for a large, inflatable-deployable antenna experiment. Acta Astronautica, 38(4-8), 251–260.

[Google Scholar] [CrossRef]

4. Lichodziejewski, D., Veal, G., & Derbes, B. (2002). Spiral Wrapped Aluminum Laminate Rigidization Technology : 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

[Google Scholar] [CrossRef]

5. Paton, B. E., Lobanov, L. M., & Volkov, V. S. (2015). Metal transformable-volume structures for space engineering. Acta Astronautica, 110, 50–57.

[Google Scholar] [CrossRef]

6. Raketno-kosmicheskaja korporacija “Jenergija” im. S. P. Koroleva. (2016). Rossijskij segment MKS. Spravochnik pol'zovatelja [The Russian segment of the ISS. User's manual]. Korolev: RKK “Jenergija” im. S. P. Koroljova (in Russian)
[Ракетно-космическая корпорация «Энергия» им. С. П. Королева. (2016). Российский сегмент МКС. Справочник пользователя. Королев: РКК «Энергия» им. С. П. Королёва].

7. Favorskij, O., & Kadaner, Ja. (1967). Voprosy teploobmena v kosmose [Questions of heat transfer in space]. Moscow: Vysshaja shkola (in Russian)
[Фаворский, О., & Каданер, Я. (1967). Вопросы теплообмена в космосе. Москва: Высшая школа].

[Google Scholar]

8. Zhang, L., & Chen, R. (2004). TiO2-Siloxane Thermal Control Coatings for Protection of Spacecraft Polymers. Chinese Journal of Aeronautics, 17(1), 53–59.

[Google Scholar] [CrossRef]

9. Halimanovich, V. I., Harlamov, V. A., Ermolaev, R. A., Miheev, A. E., & Girn, A. V. (2009). Ispytanija laboratornyh obrazcov termoregulirujushhih pokrytij ugleplastikovyh jelementov kosmicheskih apparatov [Testing laboratory patterns with thermoregulation coatingon carbon details of space vehicles]. Vestnik SibGAU, 3, 110–113 (in Russian)
[Халиманович, В. И., Харламов, В. А., Ермолаев, Р. А., Михеев, А. Е., & Гирн, А. В. (2009). Испытания лабораторных образцов терморегулирующих покрытий углепластиковых элементов космических аппаратов. Вестник СибГАУ, 3, 110–113].

[Google Scholar]

10. Miheev, A. E., Girn, A. V., Ivasev, S. S., & Evkin, I. V. (2013). Issledovanie svojstv zashhitnyh pokrytij dlja kosmicheskih apparatov [Investigation of the space vehicles coatings feature]. Vestnik SibGAU, 3(49), 217–224 (in Russian)
[Михеев, А. Е., Гирн, А. В., Ивасев, С. С., & Евкин, И. В. (2013). Исследование свойств защитных покрытий для космических аппаратов. Вестник СибГАУ, 3(49), 217–224].

[Google Scholar]

11. International Organization for Standardization. (2003). Glass in building. Determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors (ISO 9050:2003). Retrieved May 1, 2018, from https://www.iso.org/obp/ui/#iso:std:iso:9050:ed-2:v1:en

[Google Scholar]

12. Paderin, L. Ja., Prusov, B. V., & Tokarev, O. D. (2011). Ustanovka dlja issledovanij integral'noj polusfericheskoj izluchatel'noj sposobnosti teplozashhitnyh materialov i termoregulirujushhih pokrytij [Installation for studies of the integral hemispherical emissivity of heat-shielding materials and thermoregulatory coatings]. Uchenye zapiski CAGI, 1, 53–61 (in Russian)
[Падерин, Л. Я., Прусов, Б. В., & Токарев, О. Д. (2011). Установка для исследований интегральной полусферической излучательной способности теплозащитных материалов и терморегулирующих покрытий. Ученые записки ЦАГИ, 1, 53–61].

[Google Scholar]

13. Cherepanov, V. (2005). Razrabotka metodov i sredstv metrologicheskogo obespechenija izmerenij kojefficientov teplovogo izluchenija materialov [Development of methods and tools for metrological support of measurements of thermal radiation coefficients of materials]. Interjekspo Geo-Sibir', 6 (in Russian)
[Черепанов, В. (2005). Разработка методов и средств метрологического обеспечения измерений коэффициентов теплового излучения материалов. Интерэкспо Гео-Сибирь, 6].

[Google Scholar]

14. Králík, T., Musilová, V., Hanzelka, P., & Frolec, J. (2016). Method for measurement of emissivity and absorptivity of highly reflective surfaces from 20 K to room temperatures. Metrologia, 53(2), 743–753.

[Google Scholar] [CrossRef]

15. Grishhenko, T. G., Dekusha, L. V., Vorob'ev, L. I., Burova, Z. A., Dekusha, O. L., & Kovtun, S. I. (2017). Teplometrija: teorija, metrologija, praktika. Metody izmerenija teplovogo potoka [Thermometry: theory, metrology, practice. Methods for measuring heat flow]. Kyiv: Institut tehnicheskoj teplofiziki NAN Ukrainy (in Russian)
[Грищенко, Т. Г., Декуша, Л. В., Воробьев, Л. И., Бурова, З. А., Декуша, О. Л., & Ковтун, С. И. (2017). Теплометрия: теория, метрология, практика. Методы измерения теплового потока. Киев: Институт технической теплофизики НАН Украины].

[Google Scholar]

16. Kovtun, S., Dekusha, L., & Vorobiov, L. (2018). Analizuvannia vplyvu parametriv vyprominiuvacha na peredavannia odynytsi vymiriuvannia teplovoho potoku [Analysis of influence of the radiant source parameters on transfer of heat flux density unit]. Slovak international scientific journal, 16(1), 51–54 (in Ukrainian)
[Ковтун, С., Декуша, Л., & Воробйов, Л. (2018). Аналізування впливу параметрів випромінювача на передавання одиниці вимірювання теплового потоку. Slovak international scientific journal, 16(1), 51–54].

17. Uong, X. (1979). Osnovnye formuly i dannye po teploobmenu dlja inzhenerov [Basic formulas and data on heat transfer for engineers]. Moscow: Atomizdat (in Russian)
[Уонг, X. (1979). Основные формулы и данные по теплообмену для инженеров. Москва: Атомиздат].

[Google Scholar]

18. Basok, B., Dekusha, L., Honcharuk, S., & Chorna, N. (2013). Prylad dlia vymiriuvannia insoliatsii budivel ta sporud [The instrument for measuring the insolation of buildings and structures]. Budivelni konstruktsii. Enerhozberezhennia u budivnytstvi. Suchasni konstruktyvni systemy, efektyvni materialy ta inzhenerne obladnannia, 77, 55 – 59 (in Ukrainian)
[Басок, Б., Декуша, Л., Гончарук, С., & Чорна, Н. (2013). Прилад для вимірювання інсоляції будівель та споруд. Будівельні конструкції. Енергозбереження у будівництві. Сучасні конструктивні системи, ефективні матеріали та інженерне обладнання, 77, 55 – 59].

[Google Scholar]


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Vitalij Babak, Leonid Vorobiov, Leonid Dekusha, Valentin Volkov, Zinaida Burova, Oleg Dekusha, Svetlana Kovtun

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.