Studies on Cd1Se0.6Te0.4 Thin Films by Spectroscopic and Diffractometer Characterization

Cliff Orori Mosiori, Duke Ateyh Oeba

Abstract

Cadmium selenide tellurium is a compound containing cadmium, tellurium and selenium elements forming a combined solid. Hall measurements suggest that it is an n-type semiconductor. Related optical studies indicate that is transparent to infra-red radiation. Structural studies clearly show that it has a wurtzite, sphalerite crystalline forms. Cadmium is a toxic heavy metal, and selenium is only toxic in large amounts or doses. By this toxicity, cadmium selenide is a known to be carcinogen to humans; however, this does not stop investigating it for optoelectronic applications. Current research has narrowed down to investigating cadmium selenide when in the form of nanoparticles. Cadmium selenide finds applications has found applications in opto-electronic devices like laser diodes, biomedical imaging, nano-sensing, high-efficiency solar cells and thin-film transistors. By chemical bath deposition, Cd1Se0.6Te0.4 thin films were grown onto glass. Tellurium was gradually introduced as an impurity and its crystalline structure and optical properties were investigated by XRD and UV-VIS spectroscopy. The main Cd1Se0.6Te0.4/glass characteristics were correlated with the conditions of growing and post-growth treatment and it was found out that films were homogeneous films with controllable thickness onto the glass substrate and suitable for n-type “sandwich” heterostructures applications. Comparison of the intensities of equivalent reflexions provided a test for the internal consistency of the measurements. Equivalent reflexions in two specimens differed on average by 1.4 % and 0.6 % from the mean measured intensity, attesting to the high internal consistency of measurements from extended-face crystals. By comparison from data obtained from all samples showed their average deviation from the mean to be 0.9 %.




Keywords


cadmium selenide tellurium; Cd1Se0.6Te0.4 thin films; glass; chemical bath deposition

Full Text:

PDF


References


1. Chen, J., Gao, Y., Xu, Z., Wu, G., Chen, Y., & Zhu, C. (2006). A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Analytica chimica acta, 577(1), 77–84.

[Google Scholar] [CrossRef]

2. García-Santamaría, F., Brovelli, S., Viswanatha, R., Hollingsworth, J. A., Htoon, H., Crooker, S. A., & Klimov, V. I. (2011). Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core− shell interface. Nano letters, 11(2), 687–693.

[Google Scholar] [CrossRef]

3. Hossain, M. A., Jennings, J. R., Koh, Z. Y., & Wang, Q. (2011). Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. Acs Nano, 5(4), 3172–3181.

[Google Scholar] [CrossRef]

4. Ithurria, S., Bousquet, G., & Dubertret, B. (2011). Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. Journal of the American Chemical Society, 133(9), 3070–3077.

[Google Scholar] [CrossRef]

5. Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S., & Talapin, D. V. (2011). Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature nanotechnology, 6(6), 348–352.

[Google Scholar] [CrossRef]

6. Liu, Y. H., Wang, F., Wang, Y., Gibbons, P. C., & Buhro, W. E. (2011). Lamellar assembly of cadmium selenide nanoclusters into quantum belts. Journal of the American Chemical Society, 133(42), 17005–17013.

[Google Scholar] [CrossRef]

7. Owen, J. S., Park, J., Trudeau, P. E., & Alivisatos, A. P. (2008). Reaction chemistry and ligand exchange at cadmium− selenide nanocrystal surfaces. Journal of the American Chemical Society, 130(37), 12279–12281.

[Google Scholar] [CrossRef]

8. Pernik, D. R., Tvrdy, K., Radich, J. G., & Kamat, P. V. (2011). Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: linked versus direct attachment. The Journal of Physical Chemistry C, 115(27), 13511–13519.

[Google Scholar] [CrossRef]

9. Pradhan, N., Goorskey, D., Thessing, J., & Peng, X. (2005). An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. Journal of the American Chemical Society, 127(50), 17586–17587.

[Google Scholar] [CrossRef]

10. Qian, L., Zheng, Y., Xue, J., & Holloway, P. H. (2011). Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature photonics, 5(9), 543–548.

[Google Scholar] [CrossRef]

11. Robel, I., Subramanian, V., Kuno, M., & Kamat, P. V. (2006). Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society, 128(7), 2385–2393.

[Google Scholar] [CrossRef]

12. Skaff, H., Ilker, M. F., Coughlin, E. B., & Emrick, T. (2002). Preparation of cadmium selenide−Polyolefin composites from functional phosphine oxides and ruthenium-based metathesis. Journal of the American Chemical Society, 124(20), 5729–5733.

[Google Scholar] [CrossRef]

13. Werlin, R., Priester, J. H., Mielke, R. E., Krämer, S., Jackson, S., Stoimenov, P. K., ... & Holden, P. A. (2011). Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nature nanotechnology, 6(1), 65–71.

[Google Scholar] [CrossRef]

14. Yu, W. W., Qu, L., Guo, W., & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15(14), 2854–2860.

[Google Scholar] [CrossRef]


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Cliff Orori Mosiori, Duke Ateyh Oeba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.